Electricité‑Optique‑Mécanique
( Options T et TA )
Les deux parties du problème sont assez largement indépendantes. Il est néanmoins préférable d'avoir résolu les questions 1.1 et 1.2 avant d'aborder la deuxième partie.
ELECTRICITE
1. On considère le montage de la figure E.1 représentant un amplificateur opérationnel idéal associé à deux résistances. On appelle Usat et -Usat les deux tensions de saturation positive et négative en sortie de
l'amplificateur. On notera $k = \frac{{{R_2}}}{{{R_1} + {R_2}}}$ .
1.1 Etudier le fonctionnement de ce montage et en déduire la caractéristique de transfert donnant la tension de sortie en fonction de la tension d'entrée : us= f(ue). On aura soin de préciser sur cette caractéristique les points particuliers en fonction de k et de Usat (et -Usat).
1.2 Quelle est la fonction réalisée par ce montage ?
On ajoute au montage précédent un condensateur de capacité C et une résistance R pour obtenir le montage de la figure E.2.
1.3 Ecrire l'équation différentielle régissant l'évolution de la tension ue en fonction de la tension us et de la constante de temps = RC.
1.4 En supposant que la valeur initiale de la tension ue est nulle et que la tension de sortie us est égale à Usat, résoudre l'équation précédente en donnant l'expression de la tension ue(t). Jusqu'à quel instant dure ce régime ?
1.5 On admet que les commutations en sortie de l'amplificateur opérationnel sont instantanées. Dessiner sur un même graphique l'allure des signaux us(t) et ue(t).
1.6 Calculer alors la fréquence f du signal observé en sortie de l'amplificateur opérationnel.
2.1 Quelle est la fonction réalisée par le second amplificateur opérationnel associé aux éléments R et C ?
2.2 On suppose ce fonctionnement parfait. Donner l'équation différentielle reliant les tensions us et v en fonction de la constante τ = R.C.
2.3 Déterminer l'équation reliant la tension ue aux tensions us et v en fonction uniquement de R1 et R2.
2.4 Pour quelles valeurs V0 et -V0 de v le premier amplificateur voit-il sa tension de sortie us basculer de -Usat à +Usat ou de +Usat à -Usat ?
2.5 Compte tenu de la réponse précédente, quelle condition doivent respecter les résistances R1 et R2 pour que le montage puisse fonctionner ?
Cette condition est supposée vérifiée dans la suite du problème.
2.6 On choisit un instant initial tel que v = V0 et us = Usat et l'on suppose toujours les commutations de l'amplificateur opérationnel instantanées. Tracer sur un même graphique la forme temporelle des tensions v(t) et us(t).
2.7 Calculer la fréquence f' de ces tensions.
2.8 Quelles améliorations a-t-on apportées par rapport au premier montage ?
2.9 Application numérique : on choisit un condensateur de capacité C = 10 nanofarads, la tension de saturation valant Usat = 12 Volts.
Donner des valeurs numériques raisonnables aux trois résistances R1 , R2 et R pour que le montage puisse délivrer en v(t) une tension d'amplitude 6 volts avec une fréquence réglable entre 100 hertz et 10 kilohertz.
OPTIQUEOn considère un dispositif interférentiel constitué par un diaphragme D percé de trois fentes F1, F2, F3 très fines et équidistantes:
${F_1}{F_2} = {F_2}{F_3} = d$
Ces trois fentes sont normales au plan de la figure 0.1, la fente centrale F2 est de largeur réglable, les deux fentes F1 et F3 sont de même largeur.
Le système est éclairé en lumière monochromatique de longueur d'onde λ par une fente source F très fine, parallèle aux trois fentes précédentes et disposée au foyer objet d'une lentille L conformément à la figure 0.1.
On observe les phénomènes d'interférences obtenus dans un plan E situé à la distance p du diaphragme D (p sera considéré comme très grand devant d).
On désignera par φ la différence de phase en un point M du plan E entre les vibrations diffractées par deux fentes consécutives du diaphragme D: F1, F2 ou F2, F3 .
On notera S0 le module de la vibration émise par F1 ou F3.
On donne:
d = 0,5 millimètre λ = 546 nanomètres p = 0,50 mètre.
1 ‑ On ferme la fente F2
‑ Décrire brièvement le phénomène observé sur le plan E
‑ Exprimer, en fonction de $y = \overline {OM} $ abscisse du point M sur le plan E, l'amplitude résultante en M et représenter graphiquement en fonction de y la variation de l'intensité vibratoire sur une distance de quelques interfranges entourant le point O.
‑ Donner la valeur numérique de l'interfrange.
2 ‑ On ouvre la fente F2 de manière à lui donner la même largeur qu'aux fentes F1 et F3 .
‑ Exprimer à nouveau l'amplitude résultante en M et représenter graphiquement la variation de l'intensité vibratoire en fonction de y en précisant les points particuliers: maximums, minimums...
3 ‑ On double la largeur de F2 de telle sorte que l'amplitude de la vibration diffractée par F2 soit le double de celle diffractée par les deux autres fentes.
‑ Représenter graphiquement la nouvelle variation de l'intensité vibratoire.
‑ Comparer le système de franges ainsi obtenu à celui observé dans la question 1 ; ne pourrait-on donner une justification physique en comparant cet effet interférentiel des trois fentes à celui de la réunion sur l'écran de deux systèmes interférentiels propres à 2 fentes ?
On désigne par ψ le déphasage que présentent alors les sources F1 et F2 d'une part, F2 et F3 d'autre part.
4.1 ‑ Donner, en fonction de φ et de ψ, I'expression de l'amplitude et de l'intensité vibratoire en M.
4.2 ‑ Représenter graphiquement la variation de l'intensité vibratoire en fonction de y pour ψ = 0, ψ = Π/2 et ψ = Π
4.3 ‑ Quel doit être l'épaisseur e de la lame pour atteindre ψ = Π/2 ?
Ne pourrait-on proposer un meilleur choix technologique de cette épaisseur pour atteindre le même résultat ?
NOTA: Pour l'ensemble de ce problème, le candidat sera aidé par un traitement analytique en notations complexes. Il pourra vérifier physiquement les résultats atteints par des représentations de FRESNEL de la composition des vibrations.
MECANIQUEEtude d'un dispositif permettant de focaliser des faisceaux de particules chargées.
Dans tout le problème, les particules ont la même charge q ; leur masse est M0 ou M1 ; les vitesses sont non‑relativistes, et les trajectoires sont situées dans le plan xOy de la figure M1.
Les particules sont émises avec la même énergie cinétique Ec, par une source S ponctuelle ; elles sont classées en 3 types :
type P0 : masse m0, vitesse initiale v0 dirigée suivant 0y.
type P'0 : masse m0, vitesse initiale v0 faisant un angle α très petit avec 0y
type P1 : masse m1, vitesse initiale v1 dirigée suivant Oy.
Le système est constitué d'un secteur de condensateur cylindrique d'angle d'ouverture φ. Les 2 armatures a1 et a2 ont pour rayon r1 et r2.
On pose ${r_0} = \frac{{{r_1} + {r_2}}}{2}$ ; $\Delta r = {r_2} - {r_1}$.
Le point A0 a pour coordonnées r0, 0.
L'électrode interne a1 est au potentiel 0 ; l'électrode externe a2 au potentiel U. On néglige les effets de bord. Le champ électrique est donc radial entre les armatures et nul à l'extérieur. La source S est située à la distance d de A0 ; S a pour coordonnées r0, ‑d.
1‑ Soit E la valeur du champ électrique en un point M situé entre les armatures à la distance r de O. Soit E0 sa valeur à la distance r0 de O. Donner l'expression de E :
1‑1 en fonction de E0 , r0 et r.
1‑2 en fonction de U, r1, r2 et r.
2‑ 2‑1 Donner l'expression de U pour qu'une particule de type P0 ait une trajectoire circulaire de centre O et de rayon r0 .
Dans la suite du problème, U conservera cette expression2‑2 Que devient cette expression de U si Δr « r0.
3‑ Quelle est la trajectoire d'une particule de type p1 ?
la distance r(t) de O à la particule
l'angle θ(t) = (O$\vec x$, O$\vec M$)
L'origine des temps est prise à l'instant où la particule est en A'0.
4‑1 Montrer que le mouvement de la particule est du type "accélération centrale". Montrer que le moment cinétique en O reste de module constant, et calculer ce module en fonction de v0, r0, d et α. Ecrire les équations différentielles régissant le mouvement de la particule dans le condensateur.
4‑2 On pose $r = {r_0}\left( {1 + \varepsilon } \right)$ avec ε<<1.
A partir d'un développement limité au premier ordre en α et ε, écrire l'équation différentielle régissant ε.
4‑3 Montrer que la solution est de la forme ε = α (a + b sinωt).
Calculer a, b et ω en fonction de r0, v0 et d.
4‑4 En déduire une équation différentielle du premier ordre en θ.
Montrer que la solution est de la forme :
$\theta = {a_1}t + \alpha \left[ {{b_1}t + {c_1}\left( {\cos \omega t - 1} \right)} \right]$.
Calculer a1, b1 et c1 en fonction de r0, v0 et d.
5‑ On étudie la convergence du faisceau de particules en sortie du condensateur. Les trajectoires en sortie sont des droites Dα dépendant de α. Soit D0 la droite obtenue pour α = 0. D0 et Dα se coupent en I à la distance d' du plan de sortie du condensateur.
5‑1 Compte tenu des approximations précédentes, calculer en fonction de α, r0, d, v0 et φ :
‑ L'instant t1 de sortie d'une particule entrée à l'instant 0 dans le condensateur.
‑ La distance de sortie : r(t1)
‑ Les composantes radiale et orthoradiale de la vitesse de sortie.
5‑2 En déduire l'expression de d' . En conclure que le dispositif permet effectivement la convergence du faisceau.
5‑3 Dans quel cas obtient-on un faisceau parallèle en sortie ?