Recherche sur le blog!

Concours Physique Centrale-Supélec (M, P') 1991 Physique II (Corrigé)

Corrigé centrale 91 M-P'
Première partie.
I- Collision neutron-noyau
1/ Conservation de la qdm : $m{\vec V_1} = m{\vec V_2} + M{\vec w_2} \Rightarrow {\vec V_1} = {\vec V_2} + A{\vec w_2}$
Conservation de l'énergie: $\text{ }\!\!{\scriptscriptstyle 1\!/\!{ }_2}\!\!\text{ }m\vec{V}_{1}^{2}=\text{ }\!\!{\scriptscriptstyle 1\!/\!{ }_2}\!\!\text{ }m\vec{V}_{2}^{2}+\text{ }\!\!{\scriptscriptstyle 1\!/\!{ }_2}\!\!\text{ }M\vec{w}_{2}^{2}\Rightarrow \vec{V}_{1}^{2}=\vec{V}_{2}^{2}+A\vec{w}_{2}^{2}$
2/ De ${\vec V_1} = {\vec V_2} + A{\vec w_2}$, on tire : $\vec V_2^2 = {({\vec V_1} - A{\vec w_2})^2} = \vec V_1^2 + A\vec w_2^2 - 2A{V_1}{w_2}\cos \theta $
Soit $\cos \theta = \frac{{\vec V_1^2 - \vec V_2^2 + {A^2}\vec w_2^2}}{{2A{V_1}{w_2}}} = \frac{{A\vec w_2^2 + {A^2}\vec w_2^2}}{{2A{V_1}{w_2}}} = \frac{{{w_2}}}{{{V_1}}}\frac{{1 + A}}{2}$> 0 donc 0 < θ < π/2
En fonction des énergies : $\text{ }\!\!{\scriptscriptstyle 1\!/\!{ }_2}\!\!\text{ }m\vec{V}_{1}^{2}=\text{ }\!\!{\scriptscriptstyle 1\!/\!{ }_2}\!\!\text{ }m\vec{V}_{2}^{2}+\text{ }\!\!{\scriptscriptstyle 1\!/\!{ }_2}\!\!\text{ }M\vec{w}_{2}^{2}\Rightarrow {{E}_{1}}-{{E}_{2}}=\text{ }\!\!{\scriptscriptstyle 1\!/\!{ }_2}\!\!\text{ A}\,\text{m}\,\vec{w}_{2}^{2}$ et ${{E}_{1}}=\text{ }\!\!{\scriptscriptstyle 1\!/\!{ }_2}\!\!\text{ }\,\text{m}\,\vec{V}_{1}^{2}$
Alors $\cos \theta = \frac{{{w_2}}}{{{V_1}}}\frac{{1 + A}}{2} = \sqrt {\frac{{{E_1} - {E_2}}}{{A{E_1}}}} \frac{{1 + A}}{2}$donc $\frac{{{E_2}}}{{{E_1}}} = 1 - \frac{{4A{{\cos }^2}\theta }}{{{{(1 + A)}^2}}}$

II- Modèle des sphères dures.
1/ La force de contact passe par le centre d'inertie, donc la vitesse ${\vec w_2}$ sera dirigé suivant la réaction normale. On en déduit : $\sin \theta = \frac{b}{{{R_1} + {R_2}}}$
2/ Le paramètre d'impact peut varier entre 0 et la valeur R1 + R2. Ce qui correspond pour le centre du neutron à
à une cible de surface variant de 0 à (R1 + R2)2.
La probablité de recevoir un impact sur une couronne de rayon : b → b + db est :$\frac{{dP}}{1} = \frac{{2\pi bdb}}{{\pi {{({R_1} + {R_2})}^2}}}$
3/ Par définition: $ < - Ln\,[1 - K{\cos ^2}\theta ]{ > _b} = < - Ln\,[1 - \frac{{K{b^2}}}{{{{({R_1} + {R_2})}^2}}}]{ > _b} = - \int\limits_0^{{R_1} + {R_2}} {Ln[1 - \frac{{K{b^2}}}{{{{({R_1} + {R_2})}^2}}}]\;db} $
En posant $x = \frac{{K{b^2}}}{{{{({R_1} + {R_2})}^2}}}$⇒ $\frac{1}{K}\left[ {(1 - x)Ln(1 - x) - (1 - x)} \right]_0^K = \frac{1}{K}\left[ {(1 - K)Ln(1 - K) - (1 - K) + 1} \right]$
Ce qui donne : $1 + \frac{{1 - K}}{K}Ln(1 - K)$ cqfd . Il faut que 0 < K < 1 pour que la fonction aît un sens.
4/ On a obtenu $\frac{{{E_2}}}{{{E_1}}} = 1 - \frac{{4A{{\cos }^2}\theta }}{{{{(1 + A)}^2}}} = 1 - K{\cos ^2}\theta $ avec $K = \frac{{4A}}{{{{(1 + A)}^2}}}$< 1 si A > 1
on peut utiliser le résultat précédent : $K = \frac{{4A}}{{{{(1 + A)}^2}}} \Rightarrow 1 - K = {\left( {\frac{{A - 1}}{{A + 1}}} \right)^2}$
Donc coefficient de ralentissement : $\gamma = < - Ln\,[\frac{{{E_2}}}{{{E_1}}}]{ > _b} = 1 + {\left( {\frac{{1 - A}}{{\sqrt {2A} }}} \right)^2}Ln(\frac{{A - 1}}{{A + 1}}) = $
5/ a)La dérivée de γ vaut zéro pour : $0 = \left( {\frac{{1 - A}}{{\sqrt A }}} \right)\left\{ { - \left( {\frac{{{A^{1/2}} + {A^{ - 1/2}}}}{{2\sqrt 2 \;A}}} \right)Ln(\frac{{A - 1}}{{A + 1}}) - \left( {\frac{1}{{\sqrt A }}} \right)\left( {\frac{1}{{(A + 1)}}} \right)} \right\}$
Le terme entre crochet ne s'annulant pas, la racine est A = 1. On vérifiera que c'est bien un maximum pour le ralentissement.
b) A-N : 1H (A = 1) γ = 1 ; 2H (A = 2) γ = 0,725 ; 12C (A = 12) γ = 0,158 ; 238U (A = 238) γ = 0,008 ;
III- Application aux ralentissements des neutrons.
1/ Il y a ½ kT par degré de liberté, donc E300K = 3/2kT = 3,9.10−2 eV.
C'est très faible devant l'énergie initiale des neutrons. On peut considèrer les noyaux immobiles, sauf pour les dernières collisions.
2 a/ Avec $\gamma = < - Ln\,[\frac{{{E_2}}}{{{E_1}}}]{ > _b}$ et en écrivant : $\frac{{{E_n}}}{{{E_0}}} = \frac{{{E_n}}}{{{E_{n - 1}}}}\frac{{{E_{n - 1}}}}{{{E_{n - 2}}}}\; \cdots \frac{{{E_1}}}{{{E_0}}} \Rightarrow Ln\left( {\frac{{{E_n}}}{{{E_0}}}} \right) = \sum\limits_1^n {Ln\left( {\frac{{{E_p}}}{{{E_{p - 1}}}}} \right)} $
on a en raisonnant sur les valeurs moyennes : $Ln\left( {\frac{{{E_n}}}{{{E_0}}}} \right) = - n\gamma \Rightarrow {E_n} = {E_0}{e^{ - \gamma }}$
2b/ $n = - \frac{1}{\gamma }Ln\left( {\frac{{{E_{300K}}}}{{{E_0}}}} \right)$d'où 1H : n = 17 ; 2H : n = 24 ; 12C : n = 108 ; 238U : n = 214;
3a/ A une date t : $v(t) = \sqrt {\frac{{2E(t)}}{m}} $, la durée moyenne intercollision est: $\Delta t = \frac{\lambda }{{v(t)}}$et le nombre de collisions par unité de temps est : $\frac{{dn}}{{dt}} = \frac{1}{{\Delta t}} \Rightarrow \frac{{dn}}{{dt}} = \frac{1}{\lambda }\sqrt {\frac{{2E}}{m}} $.
3b/ L'équation $Ln\left( {\frac{{{E_n}}}{{{E_0}}}} \right) = - n\gamma $donne, en passant à la limite : $\gamma \,dn = - Ln\,[\frac{{E + dE}}{E}] = - \frac{{dE}}{E}$
soit : $\gamma \frac{{dt}}{\lambda }\sqrt {\frac{{2E}}{m}} = - \frac{{dE}}{E}$ ; en posant $\,y = \frac{E}{{\;{E_0}}}$ on a $\gamma \frac{{dt}}{\lambda }\sqrt {\frac{{2{E_0}}}{m}} = - \frac{{dy}}{{\;{y^{3/2}}}}$
3c/ L'intégration conduit à : $2\left[ {{y^{ - 1/2}} - 1} \right] = \frac{\gamma }{\lambda }t\,\sqrt {\frac{{2{E_0}}}{m}} $soit : $\,\sqrt {\frac{{{E_0}}}{E}} = 1 + \frac{\gamma }{{2\lambda }}t\,\sqrt {\frac{{2{E_0}}}{m}} $
4a/ On calcule d'abord $\,\sqrt {\frac{{{E_0}}}{E}} \approx 5000$ puis avec γ = 0,158 on trouve t = 120 µs .
On a toujours : $\,\sqrt {\frac{{{E_0}}}{E}} > > 1$ donc $\,t = \frac{{2\lambda }}{\gamma }\sqrt {\frac{m}{{2E}}} $ indépendant de E0.
4b/ La distance parcourue pendant dt est : $dx = v.dt = dt\sqrt {\frac{{2E}}{m}} $ et on a aussi $\gamma \frac{{dt}}{\lambda }\sqrt {\frac{{2E}}{m}} = - \frac{{dE}}{E}$
donc $dx = - \frac{\lambda }{\gamma }\frac{{dE}}{E} \Rightarrow x = \frac{\lambda }{\gamma }Ln\,{\frac{{{E_0}}}{E}_{300K}}$ on trouve ainsi x = 2,8 m.
On peut remarquer que cette distance corespond à nλ puisque $n = - \frac{1}{\gamma }Ln\left( {\frac{{{E_{300K}}}}{{{E_0}}}} \right)$.

Deuxième partie.
1a/ Avec $\xi \,\vec u = {A_1}M \to $ ⇒ le théorème d'Ampère donne$\vec B = \frac{{{\mu _0}I}}{{2\pi {\xi ^2}}}\vec k \wedge \xi \vec u$
1b/${A_1}M \to = $$(r - a\cos \theta ){\vec u_r} + a\sin \theta {\vec u_{^\theta }}$⇒$\vec B = \frac{{{B_0}}}{{{\xi ^2}}}\left\{ \begin{array}{l} - a\sin \theta \;{{\vec u}_r}\\(r - a\cos \theta \;){{\vec u}_\theta }\end{array} \right.$et${\xi ^2} = {a^2} + {r^2} - 2\,a\,r\cos \theta $
1c/ $\vec B' = {B_0}\left\{ \begin{array}{l} - \frac{{a\sin \theta }}{{{\xi ^2}}}\; = - \left[ {\sin \theta {\rm{ + 2}}u\sin \theta \;\cos \theta - {{\rm{u}}^{\rm{2}}}\sin \theta [1 - 4{{\cos }^2}\theta {\rm{]}}} \right]{\rm{ }}\\\frac{{(r - a\cos \theta \;)}}{{{\xi ^2}}} = \left[ {u - {\rm{cos}}\theta - 2{\rm{u}}\,{\rm{co}}{{\rm{s}}^{\rm{2}}}\theta + {{\rm{u}}^{\rm{2}}}\cos \theta [3 - 4{{\cos }^2}\theta ]} \right]\end{array} \right.$
2a/ Il faut faire une rotation de π et changer le signe du courant. Soit: $\vec{B}''(u,\theta )=-\vec{B}'(u,\theta +\pi )$
2b/ ${B_{1r}} = B{'_r}(u,\theta ) - B{'_r}(u,\theta + \pi ) = - 2{B_0}\left[ {\sin \theta - {{\rm{u}}^{\rm{2}}}\sin \theta [1 - 4{{\cos }^2}\theta {\rm{]}}} \right]$
${B_{1\theta }} = B{'_\theta }(u,\theta ) - B{'_\theta }(u,\theta + \pi ) = - 2{B_0}\left[ {{\rm{cos}}\theta - {{\rm{u}}^{\rm{2}}}\cos \theta [3 - 4{{\cos }^2}\theta ]} \right]$
en linéarisant : ${B_{1r}} = - 2{B_0}\left[ {\sin \theta + {{\rm{u}}^{\rm{2}}}\sin 3\theta } \right]$ et${B_{1\theta }} = - 2{B_0}\left[ {{\rm{cos}}\theta + {{\rm{u}}^{\rm{2}}}\cos 3\theta } \right]$
3a/ Il faut faire une rotation d'angle − 2π/3 et d'angle +2π/3 .
3b/ Donc ${B_r} = {B_{1r}}(u,\theta ) + {B_{1r}}(u,\theta - 2\pi /3) + {B_{1r}}(u,\theta + 2\pi /3)$
${B_\theta } = {B_{1\theta }}(u,\theta ) + {B_{1\theta }}(u,\theta - 2\pi /3) + {B_{1\theta }}(u,\theta + 2\pi /3)$
Or $\left\{ \begin{array}{l}\cos (\theta - 2\pi /3) + \cos (\theta + 2\pi /3) = - \cos \theta \\\sin (\theta - 2\pi /3) + \sin (\theta + 2\pi /3) = - \sin \theta \end{array} \right.$on a finalement:
${B_r} = - 2{B_0}\left[ {3{{\rm{u}}^{\rm{2}}}\sin 3\theta } \right]$
${B_\theta } = - 2{B_0}\left[ {3{{\rm{u}}^{\rm{2}}}\cos 3\theta } \right]$ donc $C = 6$
4a/ Ligne de champ: $d\vec \ell //\vec B \Rightarrow \frac{{dr}}{{rd\theta }} = \frac{{{B_r}}}{{{B_\theta }}}$ ⇒$\frac{{dr}}{r} = \frac{{\sin 3\theta }}{{\cos 3\theta }}d\theta \Rightarrow \,{r^3} = r_0^3/\cos 3\theta $
4b/ ci-contre : allure des lignes de champ.
4c/ Module $B(r) = 6{B_0}\;{r^2}/{a^2}$,
lignes isomodules B(r) = Cte sur un cercle de centre O
II- Action du champ sur un neutron
1a/ Pour un dipôle donc deux cas possibles : ${{E}_{//}}=-\,B$ et ${{E}_{\bot }}=\,B$
Soit en remplaçant B par $C{B_0}\;{r^2}/{a^2}$⇒ ${{E}_{//}}=-\text{ }\!\!{\scriptscriptstyle 1\!/\!{ }_2}\!\!\text{ }m{{\Omega }^{2}}{{r}^{2}}$ et ${{E}_{}}=\text{ }\!\!{\scriptscriptstyle 1\!/\!{ }_2}\!\!\text{ }m{{\Omega }^{2}}{{r}^{2}}$
1b/ La force est donnée par : $\vec F = \, - gr\vec ad\,{E_p}$ donc ${\vec F_{//}} = m{\Omega ^2}\,\vec r$ et ${\vec F_{\rlap{--} \rlap{--} \not /\rlap{--} /}} = - m{\Omega ^2}\,\vec r$
Pour confiner il faut une force de rappel, seuls les neutrons antiparallèles peuvent être confinés.
2a/ La RFD donne : ${\vec F_{\rlap{--} \rlap{--} \not /\rlap{--} /}} = - m{\Omega ^2}\,\vec r = m\frac{{{d^2}\vec r}}{{d{t^2}}} + m\frac{{{d^2}z}}{{d{t^2}}}\vec k$ ⇒$ - m{\Omega ^2}\,\vec r = m\frac{{{d^2}\vec r}}{{d{t^2}}}{\rm{ et }}\frac{{{d^2}z}}{{d{t^2}}} = 0$
2b/ L'intégration donne :$\,\vec r(t) = {\vec A_1}\cos \,\Omega t + {\vec A_2}\sin \Omega t$ où ${\vec A_1}{\rm{ et }}{\vec A_2}$ sont des constantes.
soit avec les conditions initiales: $z = {v_0}t$ et $\,\vec r(t) = {x_0}\vec i\cos \,\Omega t + \frac{{{u_0}}}{\Omega }\vec j\sin \Omega t$.
2c/ La trajectoire est une hélice d'axe Oz et de section elliptique.
3a/ Le neutron est confiné si le grand axe de l'ellipse est inférieur au rayon a; x0 étant plus petit que a il faut que:$a > \frac{{{u_0}}}{\Omega }$ soit encore :${u_C} = a\,\Omega $.
3b/ A-N: uC = 5,9 m.s−1ce qui donne EC = 18.10−8 eV et aussi TC = 1,4.10−3 K
Ce résultat justifie l'appellation neutron ultra-froids.
3c/ La fonction de répartition de Boltzmann permet de calculer la fraction de neutrons qui ont une énergie inférieure à la valeur calculée précédemment:
$F = \int\limits_0^{{E_C}} {\frac{1}{{\sqrt {2\pi } }}\frac{1}{{{{(kT)}^{3/2}}}}\sqrt E \exp ( - E/kT)\,dE} $
si T = 300 K << TC on peut simplifier ⇒$F \approx \int\limits_0^{{E_C}} {\frac{1}{{\sqrt {2\pi } }}\frac{1}{{{{(kT)}^{3/2}}}}\sqrt E \,dE} = \frac{1}{{\sqrt {2\pi } }}\frac{1}{{{{(kT)}^{3/2}}}}\frac{2}{3}\left[ {{E^{3/2}}} \right]_0^{{E_C}}$
Soit finalement : $F = \sqrt {\frac{3}{{4\pi }}} {\left[ {\frac{{{T_C}}}{T}} \right]^{3/2}} \approx {5.10^{ - 9}}$ donc extrémement faible.
4/ Les neutrons ont un mouvement de dérive suivant l'axe Oz. or les fils créant le champ magnétique ne peuvent être rééllement infinis. Le confinement n'a lieu que dans la partie centrale du dispositif et se termine lorsque les neutrons sortent du dispositif.
III- Amélioration du confinement

1a/ Pour les neutrons confinés : ${\vec F_{//}} = - m{\Omega ^2}\,\vec r$ avec maintenant $\vec r = $$O'M \to $$ = (\rho - R){\vec u_\rho } + z\vec k$
1b/ En cylindriques : $\vec a = (\ddot \rho - \rho {\dot \theta ^2}){\vec u_\rho } + (2\dot \rho \dot \theta + \rho \ddot \theta ){\vec u_\theta } + \ddot z\vec k$
1c/ Equations du mouvement : $\left\{ \begin{array}{l}\ddot \rho - \rho {{\dot \theta }^2} = - {\Omega ^2}(\rho - R)\\2\dot \rho \dot \theta + \rho \ddot \theta = 0\\\ddot z = - {\Omega ^2}z\end{array} \right.$
2a/ Compte tenu des conditions initiales: $\ddot z = - {\Omega ^2}z \Rightarrow z = {z_0}\cos (\Omega t) + \frac{{{V_0}}}{\Omega }\sin \Omega t$.
2b/ $2\dot \rho \dot \theta + \rho \ddot \theta = \frac{1}{\rho }\frac{{d({\rho ^2}\dot \theta )}}{{dt}} = 0 \Rightarrow {\rho ^2}\dot \theta = Cte = \rho _0^2{\omega _0}$ "mouvement projeté sur x0y à force centrale".
2c/ Il reste l'équation en ρ(t): $\ddot \rho - \rho {\dot \theta ^2} = \ddot \rho - \left( {\frac{{\rho _0^4\omega _0^2}}{{{\rho ^3}}}} \right) = - {\Omega ^2}(\rho - R)$
3a/ si ω0 = 0 alors θ = θ0 est constant : $\ddot \rho = - {\Omega ^2}(\rho - R) \Rightarrow (\rho - R) = ({\rho _0} - R)\cos \Omega t$,
c'est l'équation paramètrique (z(t),ρ(t)) d'une ellipse de centre O'.
3b/ si $\dot \theta = Cte = {\omega _0}$ alors ${\rho ^2} = \rho _0^2$, la trajectoire est sinusoïde dessinée sur un cylindre d'axe Oz.
La trajectoire sera fermée si la durée d'un tour est un multiple de la période, soit $\Omega = n{\omega _0}$.
4a/ Si $\rho = {\rho _m}[1 + \varepsilon (t)]$ alors l'équation en ε est :${\rho _m}\ddot \varepsilon - \left( {\frac{{\rho _0^4\omega _0^2}}{{\rho _m^3}}} \right)[1 - 3\varepsilon ] = - {\Omega ^2}({\rho _m} - R + {\rho _m}\varepsilon )$
4b/ La valeur moyenne correspond à ε = 0 : $ - \left( {\frac{{\rho _0^4\omega _0^2}}{{\rho _m^3}}} \right) = - {\Omega ^2}({\rho _m} - R)$on a
4c/ Par différence : ${\rho _m}\ddot \varepsilon + 3\left( {\frac{{\rho _0^4\omega _0^2}}{{\rho _m^3}}} \right)\varepsilon + {\Omega ^2}{\rho _m}\varepsilon = 0$ soit : $\ddot \varepsilon + 3\left( {\frac{{\rho _0^4\omega _0^2}}{{\rho _m^4}}} \right)\varepsilon + {\Omega ^2}\varepsilon = 0$
ce qui s'intègre en $\varepsilon (t) = {\varepsilon _0}\cos (\Omega 't + {\varphi _0})$ en posant : $\Omega ' = \sqrt {3\left( {\frac{{\rho _0^4\omega _0^2}}{{\rho _m^4}}} \right) + {\Omega ^2}} $.
Ce qui donne alors la vitesse angulaire: $\dot \theta = \frac{{\rho _0^2{\omega _0}}}{{{\rho ^2}}} \approx \frac{{\rho _0^2{\omega _0}}}{{\rho _m^2}}[1 - 2\varepsilon ]$.
4d/ Les trajectoires sont alors ses oscillations autour des sinusoïdes tracées sur un cylindre. La vitesse angulaire étant elle même oscillante.
5/ La pesanteur entaîne un mouvement de chute selon l'équation z = ½ gt2 qui s'ajoute aux oscillations. Au bout d'une période la "chute" vaut donc : $h = 2g{\pi ^2}/{\Omega ^2}$ .
On calcule alors : h = 5,6 mm, ce qui n'est pas négligeable.
___________________________

Aucun commentaire:

Enregistrer un commentaire

Autres Concours

2011  : Concours ENAC de  physique 2011  :  énoncé ,  corrigé Concours ICNA de  physique 2011  :  énoncé ,  corrigé Concours ICNA de ...