Recherche sur le blog!

Affichage des articles dont le libellé est 1988. Afficher tous les articles
Affichage des articles dont le libellé est 1988. Afficher tous les articles

Concours Physique Centrale-Supélec (M) 1988 (Corrigé)

Corrigé de physique I M du concours de Centrale 1988

I.a)

$m\frac{{d\vec v}}{{dt}} = q\vec v \wedge \vec B$.

I.b)

Notons $\omega  = \frac{{qB}}{m} = \varepsilon {\omega _c}$ ; nous utiliserons la notation $\omega $ dans la suite à la place de la notation $\varepsilon {\omega _c}$ de l’énoncé.
$\begin{array}{l}\left( 1 \right) & {{\dot v}_x} = \omega {v_y}\\\left( 2 \right) & {{\dot v}_y} =  - \omega {v_x}\\\left( 3 \right) & {{\dot v}_z} = 0\end{array}$

I.c)

D’après l’équation (3), ${v_z} = {v_{//0}}$ est constant au cours du temps.
Posons $u = {v_x} + i{v_y}$ ; en formant la combinaison $\left( 1 \right) + i\left( 2 \right)$, $\dot u =  - i\omega u$, d’où, compte tenu de $u\left( 0 \right) = {v_{ \bot 0}}$ , $u = {v_{ \bot 0}}\exp \left( { - i\omega t} \right)$.

I.d)

Soit $r = x + i\omega  = \int {udt = \frac{{i{v_{ \bot 0}}}}{\omega }} \exp \left( { - i\omega t} \right) + cste$.
La particule a un mouvement hélicoïdal uniforme qui résulte de la composition de deux mouvements : un mouvement circulaire de rayon ${\rho _L} = \frac{{\left| {{v_{ \bot 0}}} \right|}}{{{\omega _c}}}$ avec la vitesse angulaire $ - \omega $ dans un plan perpendiculaire au champ magnétique, le centre $G$ de ce cercle décrivant un mouvement

 rectiligne uniforme de vitesse ${\vec v_{//}}$ parallèle au champ magnétique.

I.e)

Pour un électron :
$\begin{array}{l}{\omega _c} = \frac{{eB}}{m} = \frac{{1,6 \times {{10}^{ - 19}} \times 5}}{{9,1 \times {{10}^{ - 31}}}} = 8,79 \times {10^{11}}rad.{s^{ - 1}}\\{v_ \bot } = \sqrt {\frac{{2E}}{m}}  = \sqrt {\frac{{2 \times 1,6 \times {{10}^{ - 15}}}}{{9,1 \times {{10}^{ - 31}}}}}  = 5,93 \times {10^7}m.{s^{ - 1}}\\{\rho _L} = \frac{{{v_ \bot }}}{{{\omega _c}}} = 6,75 \times {10^{ - 5}}m\end{array}$
Pour un proton :
$\begin{array}{l}{\omega _c} = \frac{{eB}}{{{m_H}}} = \frac{{1,6 \times {{10}^{ - 19}} \times 5}}{{1,67 \times {{10}^{ - 27}}}} = 4,79 \times {10^8}rad.{s^{ - 1}}\\{v_ \bot } = \sqrt {\frac{{2E}}{{{m_H}}}}  = \sqrt {\frac{{2 \times 1,6 \times {{10}^{ - 15}}}}{{1,67 \times {{10}^{ - 27}}}}}  = 1,38 \times {10^6}m.{s^{ - 1}}\\{\rho _L} = \frac{{{v_ \bot }}}{{{\omega _c}}} = 2,89 \times {10^{ - 3}}m\end{array}$


II.a)

$m\frac{{d\vec v}}{{dt}} = q\vec v \wedge \vec B + q\vec E$.
 $\begin{array}{l}\left( 4 \right) & {{\dot v}_x} = \omega {v_y} + \frac{{q{E_x}}}{m}\\\left( 5 \right) & {{\dot v}_y} =  - \omega {v_x}\\\left( 6 \right) & {{\dot v}_z} = \frac{{q{E_z}}}{m}\end{array}$
D’après l’équation (6), ${v_z} = \frac{{q{E_z}}}{m}t + {v_{//0}}\quad ;\quad z = \frac{{q{E_z}}}{{2m}}{t^2} + {v_{//0}}t + cste$.
Posons $u = {v_x} + i{v_y}$ ; en formant la combinaison $\left( 4 \right) + i\left( 5 \right)$, on obtient $\dot u + i\omega u = \frac{{q{E_x}}}{m}$, d’où, compte tenu de $u\left( 0 \right) = {v_{ \bot 0}}$ , $u = \left( {{v_{ \bot 0}} + \frac{{i{E_x}}}{B}} \right)\exp \left( { - i\omega t} \right) - \frac{{i{E_x}}}{B}$.
Soit $r = x + iy = \int {udt = \left( {\frac{{i{v_{ \bot 0}}}}{\omega } - \frac{{m{E_x}}}{{q{B^2}}}} \right)} \exp \left( { - i\omega t} \right) - \frac{{i{E_x}}}{B}t + cste$.

II.b)


 La particule décrit un cercle de rayon ${\rho _L} = \left| {\frac{{i{v_{ \bot 0}}}}{\omega } - \frac{{m{E_x}}}{{q{B^2}}}} \right| = \frac{1}{{{\omega _c}}}\sqrt {v_{ \bot 0}^2 + \frac{{E_x^2}}{{{B^2}}}} $ avec la vitesse angulaire $ - \omega $ (comme l’indique la dérivée $ - i\omega $ de l’argument de l’exponentielle complexe), le centre $G$ de ce cercle décrivant un mouvement uniformément varié de vitesse $ - \frac{{{E_x}}}{B}{\vec u_y} + \left( {{v_{//0}} + \frac{{q{E_z}}}{m}t} \right){\vec u_z}$.

II.c)

${\vec v_{ \bot G}} =  - \frac{{{E_x}}}{B}{\vec u_y} = \frac{{\vec E \wedge \vec B}}{{{B^2}}}$.

III.a)

${\vec v_{ \bot G}} = \frac{{\vec F \wedge \vec B}}{{q{B^2}}}$.

III.b)

${\vec v_{ \bot G}} = \frac{{m\vec g \wedge \vec B}}{{q{B^2}}}$

III.c)

Il y a création d’un courant de densité $\vec j = \sum {nq\vec v}  = \sum {n\frac{{m\vec g \wedge \vec B}}{{{B^2}}}}  = n\left( {m + M} \right)\frac{{\vec g \wedge \vec B}}{{{B^2}}}$ ; en pratique, ce courant est négligeable, parce que $n$ est petit.


IV.a)

$\vec B\left( M \right) = \vec B\left( G \right) + \left( {y - {y_G}} \right)\frac{{dB}}{{dy}}\left( G \right){\vec u_z}$
$\vec F = q\vec v \wedge \vec B = q\vec v \wedge B\left( G \right){\vec u_z} + q\vec v \wedge \left( {y - {y_G}} \right)\frac{{dB}}{{dy}}\left( G \right){\vec u_z} = q\vec v \wedge B\left( G \right){\vec u_z} + q\frac{{dB}}{{dy}}\left( G \right)\left( {y - {y_G}} \right)\left( {\dot y{{\vec u}_x} - \dot x{{\vec u}_y}} \right)$

IV.b)

L’équation différentielle du mouvement étant non linéaire, on la résout approximativement. En première approximation, $\vec F = q\vec v \wedge \vec B$, d’où $x = {x_G} + {\rho _L}\cos \omega t$, $y = {y_G} - {\rho _L}\sin \omega t$, $G$ ayant un mouvement rectiligne uniforme parallèle à $\vec B$.
Dans une meilleure approximation, on considère une force supplémentaire. Compte tenu de $\left\langle {\vec v} \right\rangle  = \vec 0$, le terme principal est $\left\langle {\vec F} \right\rangle  = q\frac{{dB}}{{dy}}\left( G \right)\left\langle {\left( {y - {y_G}} \right)\left( {\dot y{{\vec u}_x} - \dot x{{\vec u}_y}} \right)} \right\rangle $.
$\begin{array}{l}\dot x \approx  - {\rho _L}\omega \sin \omega t\quad \dot y =  - {\rho _L}\omega \cos \omega t\\\left\langle {\left( {y - {y_G}} \right)\dot y} \right\rangle  = \rho _L^2\omega \left\langle {\cos \omega t\sin \omega t} \right\rangle  = 0\\\left\langle {\left( {y - {y_G}} \right)\dot x} \right\rangle  = \rho _L^2\omega \left\langle {{{\sin }^2}\omega t} \right\rangle  = \frac{1}{2}\rho _L^2\omega \\\left\langle {\vec F} \right\rangle  =  - \frac{1}{2}\rho _L^2\omega q\frac{{dB}}{{dy}}\left( G \right){{\vec u}_y} =  - \frac{{mv_L^2}}{{2B}}\vec \nabla B\end{array}$
Cette expression montre que la force est dirigée dans la direction où le module du champ magnétique décroît le plus vite, quelle que soit la charge ou la vitesse.

IV.c)

Appliquons l’expression de la vitesse de dérive de III.a en y remplaçant la force par sa valeur moyenne :
${\vec v_{ \bot G}} =  - \frac{{mv_ \bot ^2\left( {\vec \nabla B \wedge \vec B} \right)}}{{2q{B^3}}}$
Cette expression, équivalente à celle proposée par l’énoncé, puisque ${\rho _L} = \left| {\frac{{m{v_L}}}{{qB}}} \right|$, lui est préférable, car elle a un signe bien défini.

V.

Tous les champs magnétiques de révolution n’ont pas nécessairement la forme proposée. Par exemple, le champ magnétique d’une nappe d’un courant régulièrement réparti sur un tore d’axe $Oz$ est de révolution autour de cet axe, mais est de la forme ${B_\theta }\left( {r,z} \right){\vec u_\theta }$. Il faut faire l’hypothèse supplémentaire que tout plan contenant $Oz$ est un plan de symétrie du champ magnétique ; alors $\vec B = {B_r}\left( {r,z} \right){\vec u_r} + {B_z}\left( {r,z} \right){\vec u_z}$.
Notons aussi que, contrairement à la formulation de l’énoncé, $\vec B$ n’est pas une fonction de $r$ et $z$seuls : il dépend aussi de $\theta $ par l’intermédiaire de ${\vec u_r}$.

V.a)

Une spire d’axe $Oz$crée un tel champ magnétique. En effet, tout plan contenant $Oz$ est un plan d’antisymétrie du courant donc un plan de symétrie du champ magnétique, donc ${B_\theta } = 0$. D’autre part, la distribution de courant est invariante par rotation autour de $Oz$, donc les coordonnées du champ magnétique ne dépendent pas de $\theta $ : $\vec B = {B_r}\left( {r,z} \right){\vec u_r} + {B_z}\left( {r,z} \right){\vec u_z}$.

V.b)

Supposons que le champ magnétique ne présente pas de singularité sur l’axe. Exprimons approximativement $\vec B$ au voisinage de l’axe par un développement en puissances successives de $r$ tronqué à l’ordre 1. Comme $Oz$ est un axe de révolution du champ magnétique, c’est un axe de symétrie : ${B_z}\left( {r,z} \right)$ est une fonction paire de $r$ et ${B_r}\left( {r,z} \right)$ est une fonction impaire de $r$ ; le développement tronqué à l’ordre 1 est de la forme ${B_z}\left( {r,z} \right) \approx {B_z}\left( {0,z} \right)$ et ${B_r}\left( {r,z} \right) \approx r\frac{{\partial {B_r}}}{{\partial r}}\left( {0,z} \right)$.
Soit une surface fermée formée d’un cylindre d’axe $Oz$, de rayon $r$ petit et de longueur $dz$ complété par deux disques terminaux de rayons $r$ et d’abscisses $z$ et $z + dz$. Le flux du champ magnétique à travers cette surface fermée est nul :
$\mathop{{\int\!\!\!\!\!\int}\mkern-21mu \bigcirc} {\vec B \cdot \overrightarrow {dS} }  = {B_z}\left( {z + dz} \right)\pi {r^2} - {B_z}\left( z \right)\pi {r^2} + 2\pi rdz{B_r}\left( r \right) = \frac{{d{B_z}\left( {0,z} \right)}}{{dz}}\pi {r^2}dz + \frac{{\partial {B_r}}}{{\partial r}}\left( {0,z} \right)2\pi {r^2}dz = 0$ ; d’où $\frac{{\partial {B_r}}}{{\partial r}}\left( {0,z} \right) =  - \frac{1}{2}\frac{{d{B_z}\left( {0,z} \right)}}{{dz}}$ et près de l’axe ${B_r} \approx  - \frac{r}{2}\frac{{d{B_z}\left( {0,z} \right)}}{{dz}}$.

V.c)

$m\frac{{d{v_z}}}{{dt}} = {\left( {q\vec v \wedge \vec B} \right)_z} =  - q{v_\theta }{B_r} = \frac{{q{v_\theta }r}}{2}\frac{{d{B_z}}}{{dz}} =  - \frac{{mv_ \bot ^2}}{{2{B_z}}}\frac{{d{B_z}}}{{dz}} \Rightarrow \frac{{d{v_{//}}}}{{dt}} =  - \frac{{v_ \bot ^2}}{{2{B_z}}}\frac{{d{B_z}}}{{dz}}$ (puisque $r =  - \frac{{m{v_\theta }}}{{qB}}$).

V.d)

La théorème de la puissance cinétique s’écrit :
 $\begin{array}{l}\frac{d}{{dt}}\left( {\frac{1}{2}m\left( {v_z^2 + v_ \bot ^2} \right)} \right) = q\left( {\vec v \wedge \vec B} \right) \cdot \vec v\\m{v_z}\frac{{d{v_z}}}{{dt}} + \frac{m}{2}\frac{{dv_ \bot ^2}}{{dt}} = 0\\ - {v_z}\frac{{v_ \bot ^2}}{{2{B_z}}}\frac{{d{B_z}}}{{dz}} + \frac{1}{2}\frac{{dv_ \bot ^2}}{{dt}} = 0\\ - \frac{{v_ \bot ^2}}{{{B_z}}}\frac{{d{B_z}}}{{dt}} + \frac{{dv_ \bot ^2}}{{dt}} = 0\\\frac{{dv_ \bot ^2}}{{v_ \bot ^2}} - \frac{{d{B_z}}}{{{B_z}}} = 0\\d\ln \left( {v_ \bot ^2/{B_z}} \right) = 0\\v_ \bot ^2/{B_z} = cste\\\mu  = \frac{{mv_ \bot ^2}}{{2{B_z}}} = cste\end{array}$
$\mu $ est le moment du dipôle magnétique équivalent à la particule chargée pour un ou plusieurs tours : $\vec \mu  = \frac{1}{2}\overrightarrow {GM}  \wedge q\vec v$.

V.e)

$\mu  = \frac{{m{r^2}{\omega ^2}}}{{2{B_z}}} = \frac{{{q^2}}}{{2m}}{r^2}{B_z} = cste$, donc le flux du champ magnétique $\pi {r^2}{B_z}$ à travers le cercle décrit par la particule autour de $G$ est constant : la trajectoire de la particule est une hélice qui s’enroule sur un tube de champ d’axe $Oz$.


VI.a)

Comme on a supposé ${\rho _L} <  < R$, une ligne de champ est presque rectiligne et on peut lui appliquer localement les résultats de V.e. On pourrait le faire sur une grande distance s’il existait une force égale à $m\frac{{v_{//}^2}}{R}{\vec u_n}$ , où ${\vec u_n}$ est le vecteur unitaire de la normale principale à la ligne de champ. En l’absence d’une telle force, le champ magnétique est la source d’une force $ - m\frac{{v_{//}^2}}{R}{\vec u_n}$ qui d’après II.a crée la vitesse de dérive ${\vec v'_{ \bot G}} =  - \frac{{mv_{//}^2{{\vec u}_n} \wedge \vec B}}{{Rq{B^2}}}$.

VI.b)

Cette proposition est-elle vraie en toute généralité ? Peut-être.
Supposons que les lignes de champ soient des cercles de même axe. La question posée est alors est un problème de géométrie plane. Soit une ligne de champ, $M$ un de ses points, $C$, $R$ et ${\vec u_n}$ le centre de courbure, le rayon de courbure et le vecteur unitaire de la normale principale en $M$. Appliquons le théorème d’Ampère à une courbe fermée $ADEFA$, où $AD$   est un arc de cette ligne de champ vu de $C$ sous l’angle $d\alpha $, $DE$ et $FA$ deux segments appartenant à des droites passant par $C$ et $EF$ un arc d’une ligne de champ voisine. D’après le théorème d’Ampère, $\oint\limits_{ADEFA} {\vec B \cdot d\vec r}  = 0$, soit $B\left( A \right).CA.d\alpha  - B\left( F \right).CF.d\alpha  = 0 \Rightarrow {\left( {\overrightarrow {grad} B} \right)_n} = \frac{{B\left( F \right) - B\left( A \right)}}{{AF}} = \frac{{B\left( A \right)\left( {\frac{{CA}}{{CF}} - 1} \right)}}{{AF}} = \frac{{B\left( A \right)}}{{CF}}$, d’où ${\left( {\overrightarrow {grad} B} \right)_n} = \frac{B}{R}$.

VI.c)

Pour effectuer le calcul, il faudrait connaître la composante de $\overrightarrow {grad} B$ sur la binormale à la ligne de champ. Supposons qu’elle soit nulle (c’est vrai dans le cas traité à la question précédente), ${\vec v''_{ \bot G}} =  - \frac{{mv_ \bot ^2}}{{2Rq{B^2}}}{\vec u_n} \wedge \vec B$, d’où ${\vec v_{ \bot G}} =  - \frac{{m\left( {v_{//}^2 + v_ \bot ^2/2} \right)}}{{Rq{B^2}}}{\vec u_n} \wedge \vec B$.
Remarque : comme $\frac{{qB}}{m} = \omega $, cette formule est homogène, car de la forme ${\vec v_{ \bot G}} =  - \frac{{\left( {v_{//}^2 + v_ \bot ^2/2} \right)}}{{R\omega }}{\vec u_n} \wedge \frac{{\vec B}}{B}$. Si $R >  > {\rho _L}$ (cas usuel), ${v_ \bot } >  > {v_{ \bot G}}$.

VII.a)

Il y a conservation de l’énergie cinétique $\frac{1}{2}m\left( {v_z^2 + v_ \bot ^2} \right) = \frac{1}{2}m\left( {v_{z0}^2 + v_{ \bot 0}^2} \right)$ et du moment dipolaire $\frac{{v_ \bot ^2}}{B} = \frac{{v_{ \bot 0}^2}}{{{B_0}}}$. Si le champ magnétique croît, $v_ \bot ^2$ croît, ${v_{//}}$ décroît et donc peut s’annuler ; si c’est le cas, il change de signe par la suite, car $v_{//}^2$ ne peut devenir négatif : la particule est réfléchie.

VII.b)

$\sin \theta  = {v_ \bot }/v$$v$ est constant et $\frac{{v_ \bot ^2}}{B} = \frac{{v_{ \bot 0}^2}}{{{B_0}}}$, d’où $\frac{{{{\sin }^2}\theta }}{B} = \frac{{{{\sin }^2}{\theta _0}}}{{{B_0}}}$.

VII.c) et d)

La particule est réfléchie quand $\sin \theta  = 1$.
Elle l’est au niveau de $S$ ou $S'$ si ${\theta _0} = {\theta _{0m}} = \arcsin \sqrt {\frac{{{B_0}}}{{{B_{0m}}}}} $.
Si ${\theta _0} < {\theta _{0m}}$, la particule n’est pas réfléchie : elle est dans le cône de perte.
Si ${\theta _0} > {\theta _{0m}}$, la particule est réfléchie : les deux bobinages se comportent comme des miroirs magnétiques.

VII.e)

La durée annoncée par l’énoncé paraît bien grande. C’est la durée moyenne entre collisions qui régit la durée de confinement, le temps pour aller d’un miroir à l’autre étant beaucoup plus petit 
Si les probabilités de l’orientation de la vitesse après une collision sont également réparties dans toutes les directions, la probabilité que la direction de la vitesse soit dans l’un des deux cônes de perte est $\frac{{2 \times 2\pi \left( {1 - \cos {\theta _{0m}}} \right)}}{{4\pi }} = 1 - \cos {\theta _{0m}}$ ; la durée de confinement est $\frac{{{t_c}}}{{1 - \cos {\theta _{0m}}}}$.

VIII.a)

Le théorème d’Ampère appliqué à un cercle d’axe $Oz$ et de rayon $\rho  = R + r\cos \theta $ donne ${B_\phi }\left( {r,\theta } \right) = \frac{{{\mu _0}NI}}{{2\pi \left( {R + r\cos \theta } \right)}} = \frac{{{B_0}}}{{1 + \left( {r/R} \right)\cos \theta }}$.

VIII.b)

${\vec v_{ \bot G}} =  - \frac{{m\left( {v_{//}^2 + v_ \bot ^2/2} \right)}}{{Rq{B^2}}}{\vec u_n} \wedge \vec B = \frac{{m\left( {v_{//}^2 + v_ \bot ^2/2} \right)}}{{RqB}}{\vec u_z}$.
Les ions sont éjectés dans la direction et le sens de $Oz$ et les électrons dans le sens contraire. Leur vitesse de dérive est la même en moyenne : ${v_{ \bot G}} = \frac{{mv_ \bot ^2}}{{eBR}} = \frac{{2 \times 1,6 \times {{10}^{ - 15}}}}{{1,6 \times {{10}^{ - 19}} \times 5}} = 4{\kern 1pt} 000m.{s^{ - 1}}$. La durée de confinement est de l’ordre de $\frac{{2{r_m}}}{{{v_{ \bot G}}}} = \frac{{2 \times 0,2}}{{4000}} = {10^{ - 4}}s$.


IX.a)

Déterminons le champ magnétique créé par un courant de densité $\vec j = {j_\phi }\left( r \right){\vec u_\phi }$.
Tout plan contenant $Oz$ est un plan d’antisymétrie du courant, donc un plan de symétrie du champ magnétique, donc ${B_\phi } = 0$. La distribution de courant est invariante dans les rotations d’axe $Oz$. D’où $\vec B = {B_r}\left( {r,\theta } \right){\vec u_r} + {B_\theta }\left( {r,\theta } \right){\vec u_\theta }$.
Or l’énoncé suppose ${B_r} = 0$ ($\vec B = {\vec B_\phi } + {\vec B_\theta }$ à la question IX.b), ce que la symétrie ne permet pas de conjecturer.
Il faut donc considérer que le champ magnétique est voisin de celui d’un courant cylindrique tangent au courant ${\vec j_\phi }\left( r \right){\vec u_\phi }$ pour la valeur de $\phi $ considérée. Cette approximation paraît acceptable si ${r_m} <  < R$, ce que nous supposerons.
Si $M$ est le point pour lequel $r = 0$ dans le plan de coordonnée azimutale $\phi $ considérée, et si $Mz'$ est la tangente au cercle d’axe $Oz$  passant par $M$, la nouvelle distribution de courant a la symétrie cylindrique par rapport à $Mz'$ : tout plan contenant $Mz'$ est plan de symétrie du courant, donc d’antisymétrie du champ magnétique, donc $\vec B$ est orthoradial ; cette distribution de courant est invariante par rotation autour de $Mz'$, donc $\vec B = {B_\theta }\left( r \right){\vec u_\theta }$. Enfin, ${B_\theta }\left( r \right)$ ne dépend pas de $\phi $, car la distribution exacte de courant est invariante par rotation autour de $Oz$. Appliquons le théorème d’Ampère à un cercle d’axe $Mz'$ et de rayon $r$ : $2\pi r{B_\theta } = {\mu _0}I\left( r \right)$ d’où ${B_\theta } = \frac{{{\mu _0}I\left( r \right)}}{{2\pi r}}$.

IX.b)

Un petit déplacement $\left( {dr,rd\theta ,\left( {R + r\cos \theta } \right)d\phi } \right)$ le long d’une ligne de champ est parallèle au champ magnétique $\left( {0,{B_\theta },{B_\phi }} \right)$ ; pour ce déplacement :
·         $dr = 0$ : toute ligne de champ fait partie d’un tore dont la section est un cercle concentrique avec la section du solénoïde toroïdal ;
·         $\frac{{\left( {R + r\cos \theta } \right)d\phi }}{{rd\theta }} = \frac{{{B_\phi }}}{{{B_\theta }}} = \frac{{\frac{{{B_0}}}{{1 + \left( {r/R} \right)\cos \theta }}}}{{\frac{{{\mu _0}I\left( r \right)}}{{2\pi r}}}} \Rightarrow \frac{{d\phi }}{{d\theta }} = \frac{{2\pi {r^2}{B_0}}}{{{\mu _0}RI\left( r \right){{\left( {1 + \left( {r/R} \right)\cos \theta } \right)}^2}}}$.
Cette équation est de la forme $\frac{{d\phi }}{{d\theta }} = q\left( r \right) = \frac{{2\pi {r^2}{B_0}}}{{{\mu _0}RI\left( r \right)}}$ si on néglige les termes d’ordre 1 et suivants en $r/R$, ce qui est conforme à l’approximation qui nous a permis de calculer le champ magnétique.
$q\left( r \right)$ est le rapport entre le nombre de tours que fait une ligne de champ dans la direction azimutale et le nombre tours qu’elle fait dans la direction poloïdale.
Remarque : dans les cas simples, les lignes de champ magnétiques sont des courbes fermées. Ici, ce n’est le cas que si  $q\left( r \right)$ est un entier, ce qui est peu probable, d’autant que les calculs sont approximatifs.
Si $q\left( 0 \right) = 1$, $I\left( r \right) \approx {j_\phi }\left( 0 \right)\pi {r^2}$, d’où ${j_\phi }\left( 0 \right) = \frac{{2{B_0}}}{{{\mu _0}R}} = \frac{{2 \times 5}}{{4\pi  \times {{10}^{ - 7}}}} = 8 \times {10^6}A.{m^{ - 2}}$.

IX.c)

En première approximation, une particule chargée tourne autour de son centre guide, qui se meut le long d’une ligne de champ ; toutefois, le centre guide dérive lentement perpendiculairement à cette ligne de champ, avec une vitesse telle que la force magnétique associée neutralise la force moyenne sur un tour $\left\langle {\vec F} \right\rangle  =  - \frac{{mv_{//}^2{{\vec u}_n}}}{{{R_{courbure}}}} - \frac{{mv_ \bot ^2\vec \nabla B}}{{2B}}$, où ${R_{courbure}}$ est le rayon de courbure d’une ligne de champ. Qualitativement, cette force est dirigée dans la direction opposée à celle de la projection du point considéré sur le cercle moyen du tore ; la dérive crée un mouvement qui s’enroule autour de ce cercle moyen du tore. Les particules ont deux raisons de décrire des hélices autour de ce cercle, cette dérive et le fait qu’elles suivent les lignes de champ.
L’énoncé demande de mettre en évidence « que l'effet de dérive est compensé exactement entre les portions de trajectoire du centre guide, situées de part et d'autre du plan équatorial du tore ». Voici en figure 1 la trajectoire sans champ poloïdal et en figure 2 la trajectoire avec champ poloïdal ; ces deux figures sont dilatées dans le sens de l’axe $z$, pour mieux montrer la dérive :

En l’absence de champ poloïdal, les particules s’évadent en partant dans une direction parallèle à $Oz$ ; le champ poloïdal crée un gradient de champ magnétique ; s’il est supérieur à celui produit par la courbure du tore, alors, après avoir tourné de 180° autour du cercle moyen du tore, les particules prennent une dérive opposée, aussi elles oscillent autour du cercle moyen du tore. L’énoncé suggère que les particules oscillent autour du plan équatorial du tore ; en fait, c’est vrai, mais ce n’est pas un bon argument pour comprendre la stabilité.
En raison du gradient du champ magnétique dû à la distance à l’axe $Oz$, en réalité les trajectoires sont centrées par rapport à un cercle un peu plus grand que le cercle moyen du tore.

IX.d)

Le module du champ magnétique $\sqrt {{{\left( {\frac{{{B_0}}}{{1 + \left( {r/R} \right)\cos \theta }}} \right)}^2} + {{\left( {\frac{{{\mu _0}I\left( r \right)}}{{2\pi r}}} \right)}^2}} $ varie sur la trajectoire parce que $\theta $ varie. D’après la question VII, les particules peuvent être piégées et osciller sur une ligne de champ entre deux positions où le champ magnétique est assez grand pour les réfléchir.

IX.e)

Pour ces particules, l’effet de dérive n’est pas compensé, car elles ne sont pas également dans toutes les directions autour du cercle moyen, aussi la dérive due au gradient du champ magnétique a une direction moyenne et ne se compense pas. Notons aussi que le sens de la dérive ne dépend pas du sens de la composante de la vitesse parallèle au champ magnétique et donc que cette dérive ne se compense pas sur un aller et sur le retour suivant.


Concours Physique ENSAM Thermodynamique-Chimie 1988 (Énoncé)

Thermodynamique ‑ Chimie

( Option T )

Durée : 4 heures


THERMODYNAMIQUE

          ETUDE D'UNE TUYERE CONVERGENTE‑DIVERGENTE

l  Relations préliminaires
On considère une masse de l kg d'un fluide se comportant comme un gaz parfait de masse molaire M.

l.l. Donner la relation entre la pression p, la masse volumique et la température absolue T, caractérisant un état quelconque du gaz. On désignera par r la constante massique égale à ( R/M) .

1.2. Le gaz subit une évolution isentropique de l'état Poro, To à l'état p, r, T. Donner l'équation décrivant la transformation en fonction des variables p et g. Donner l'équation décrivant la transformation en fonction des variables T et r. On désignera par le rapport des capacités thermiques massiques du fluide à pression constante et à volume constant.

l.3. L'étude de la propagation des ondes acoustiques dans un milieu gazeux montre que la célérité du son a est donnée par la relation:
              $a = {\left( {\rho .{\chi _s}} \right)^{ - \frac{1}{2}}}$
s est le coefficient de compressibilité isentropique: $\frac{1}{\rho }{\left( {\frac{{\partial \rho }}{{\partial p}}} \right)_s}$
Exprimer a en fonction de T, r, et g.

Application numérique:
A la température de 300K, calculer a pour l'air ( M = 29 g.mol-1g= 7/5 ) et pour l'hélium ( M = 4 g.mol-1g= 5/3 ), ces gaz étant supposés parfaits.
On rappelle la valeur de la constante molaire: R = 8,3144 J.mol-1.K-1.



2. Etude de la tuyère

Le dernier organe d'un moteur de fusée est constitué par une tuyère à parois adiabatiques et indéformables.
La tuyère est parcourue par le flux des gaz de combustion obtenus dans la chambre de combustion située en amont de la tuyère.
Le régime d'écoulement des gaz est permanent, isentropique et monodimensionnel. La pression p, la masse volumique , la température T et la vitesse d'écoulement c du fluide sont uniformes et indépendantes du temps dans une section droite circulaire quelconque d'aire A.
Le profil géométrique de la tuyère comprend entre la section d'entrée et la section de sortie :
     ‑ une partie de section décroissante ou convergent,
     ‑ le col correspondant à la section d'aire minimale,
     ‑ une partie de section croissante ou divergent.
Les notations utilisées sont précisées sur le schéma ci-dessous. Les caractéristiques dans la section d'entrée sont indexées o , les caractéristiques dans la section de sortie sont indexées 1 et les caractéristiques dans la section du col sont indexées c La vitesse co dans la section d'entrée sera considérée comme négligeable dans ce qui suit.

2.1 On considère deux sections droites voisines entre lesquelles le fluide passe de l'état p, r, T, c à l'état p + dp, r+dr, T + dT, c + dc, l'aire de la section variant de A à A + dA.
2.1.1 A partir de l'expression de la conservation du débit-masse qmrcA, établir la relation liant dr, dc et dA.
2.1.2 A partir de l'expression du premier principe, établir la relation liant dc et dr.
2.1.3 En déduire que:
              $\frac{{dA}}{A} = \frac{{dc}}{c}\left( {{M^2} - 1} \right)$                 où M = $\frac{c}{a}$ {nombre de Mach)
2.1.4 A partir du résultat obtenu en 2.1.3 et dans le cas où la vitesse d'écoulement est continûment croissante entre la section d'entrée et la section de sortie, montrer que le régime d'écoulement est subsonique dans le convergent, sonique au col et supersonique dans le divergent.

2.2 On considère la partie du système comprise entre la section d'entrée et une section quelconque.
2.2.1 Par application du premier principe expliciter la relation:
          $\frac{{{q_m}}}{a} = f\left( {{p_o},{\rho _o},\gamma ,\tau } \right)$
représente le rapport ( p/po )
2.2.2 Montrer que ( qm/A ) passe par un maximum lorsque varie et donner les expressions correspondantes de t= ( p/po ) et de (T/To) en fonction de g, ainsi que celle de la vitesse correspondante c. En déduire que ces caractéristiques sont celles existant dans la section du col. Donner l'expression du débit maximal de la tuyère qui en résulte en fonction de Aog, Po et ro.
2.2.3 Exprimer le rapport ( A1/Ac ) en fonction de ( p1/pc ) et de ( c1/cc ).
2.2.4 Montrer que la vitesse d'écoulement du fluide dans la section de sortie est caractérisée par une valeur limite cL qu'on exprimera en fonction de ao et de g.


2.3 Pour une tuyère particulière, les conditions de combustion imposent les valeurs suivantes:
          To=3000K;          ro=50 bars;                   M=25 g.mol-l;                         g= 1,25.
La pression de sortie p1 est égale à 1 bar ( pression atmosphérique au sol).
Calculer numériquement les valeurs correspondantes de:
( qm/Ac ) , pc.,Tc , cc , T1, c1, ( A1/Ac ), cL

2.4 Le moteur de la fusée doit fournir une poussée de 8.106 N; il est équipe de huit tuyères identiques.
2.41 Calculer le débit-masse qm nécessaire par tuyère.
2.4.2 Calculer les aires et les diamètres correspondants des sections au col et à la sortie.

2.5 On considère maintenant que les conditions d'écoulement restent isentropiques dans le convergent alors que dans le divergent diverses causes d'irréversibilité conduisent à un rendement de la détente par rapport à l'isentropique ${\eta _{is}}$${\eta _{is}}$ égal à 0,85.
2.5.1 Reprendre les questions 2.4.1 et 2.4.2 en tenant compte des nouvelles conditions.
2.5.2 Représenter l'évolution du fluide dans la tuyère sur un diagramme entropique ( température T ‑ entropie massique s) .
On adoptera les échelles suivantes: 5 cm = 1000 K et 5 cm = 100 J.kg-1.K-1.

CHIMIE

Données:
     Constante d'Avogadro‑Lochschmidt :                    N = 6,022.1023 mol-1 
     Constante molaire des gaz parfaits :              R = 8,3144 J.mol-l.K-1.
     Constante de Faraday :                                  F = 96485 C.mol-1.
     Masses molaires :
       MH = 1 g.mol-1 ;              MNa = 23 g.mol-1;         MCl = 35,5 g.mol-1;       MO = 16 g.mol-1 
     Potentiel d'oxydo-réduction normal du couple Au3+/Au  à 25 °C:
              ${E^o}_{A{u^{3 + }}/Au} = $ 1,500 V/ENH.
Dans tout ce qui suit on confondra concentration volumique molaire et activité.
La pression de l'état référence des espèces gazeuses est égale à 1 bar.

1. L'or appartient au groupe I.B de la classification périodique des éléments. Le schéma ci-après reproduit les renseignements correspondants extraits d'une représentation classique.

1.1 Donner succinctement la définition précise des termes: masse molaire, nombre atomique, degré d'oxydation ( ou état d'oxydation).
1.2 La structure électronique décrite correspond à l'état fondamental de l'atome. Commenter sa description et la représenter en utilisant la notion de case quantique ou éventuellement d'orbitale, en se limitant aux deux dernières sous-couches.
Xe est le symbole du xénon, gaz rare qui précède l'or, dont le numéro atomique Z est égal à 54

1.3 Une des espèces représentant l'état d'oxydation III de l'or est l'ion aurique Au3+. Préciser sa structure électronique et la représenter en utilisant la notion de case quantique ou éventuellement d'orbitale, en se limitant aux deux dernières sous-couches.

2. A l'état solide, l'or est un métal cristallisant dans le système cubique à faces centrées.
2.1 Calculer le rayon ionique de l'or dans cette structure.
2.2 Schématiser, en projection sur le plan de la feuille, l'arrangement des ions centrés:
     a) dans les plans bissecteurs des dièdres droits de la maille élémentaire
     b) dans les plans diagonaux de la maille élémentaire.

3. A l'état d'oxydation III, l'or forme avec les ions chlorure Cl-, des ions complexes tétrachloroaurate III AuCl4- selon le schéma réactionnel:
                   Au3+  +  4 Cl-   $\rightleftarrows $   AuCl4-
3.1 On met en contact à 25°C, une électrode métallique d'or, parfaitement inattaquable, avec une solution aqueuse de concentration 3,98 g.l-1  en tétrachloroaurate de sodium dihydraté NaAuCl4,2H20. Le potentiel à l'équilibre de cette électrode est égal à 1,384 V/ENH.
En déduire la constante de formation Kf de l'ion complexe ainsi que l'enthalpie libre réactionnelle 298 correspondante.
3.2 On ajoute à la solution précédente 0,0585 g.l-1  de chlorure de sodium NaCl.
Calculer le nouveau potentiel à l'équilibre de l'électrode d'or exprimé en V/ENH, en faisant des approximations éventuelles.

4. En présence du complexant Cl-, on peut considérer le demi-équilibre d'oxydo-réduction :
               AuCl4-  +  3 e-  $\rightleftarrows $  Au  +  Cl- 
4.1 Calculer le potentiel normal ${E^o}_{AuC{l_4}^ - /Au}$ du couple AuCl4- / Au .

4.2 On considère la cellule galvanique suivante:

L'électrolyte (1) est la solution décrite en 3.2 . L'électrolyte (2) est une solution aqueuse de chlorure d'hydrogène de concentration volumique molaire égale à 0,01 mol.l-1  L'hydrogène gazeux sous la pression de 1 bar est adsorbé sur l'électrode d'or.
42.1 Ecrire les schémas réactionnels correspondants aux deux demi-équilibres d'oxydo-réduction intervenant aux électrodes d'or Au( 1 ) et Au(2).
4.2.2 Calculer les potentiels à l'équilibre, en V/ENH, des deux électrodes d'or Au(1) et Au(2). En déduire:
     ‑ La f.è.m de la cellule galvanique schématisée ci-dessus.
     ‑ La réaction d'oxydo-réduction intervenant si on ferme la cellule sur un circuit extérieur résistif et l'enthalpie réactionnelle DG298 correspondante.


4.3 Certains circuits intégrés utilisent des conducteurs protégés par une métallisation d'or. En fonctionnement, une différence de potentiel U existe entre ces conducteurs et ils peuvent être en contact avec un électrolyte. On peut alors constater des dégradations du revêtement d'or d'un des fils ou même des courts-circuits entre conducteurs.

4.3.1 L'électrolyte en contact avec les conducteurs est une solution aqueuse dont les caractéristiques sont les suivantes:
          [Cl-] = 0,5 mol.l-1 ;        [AuCl4-] = 10-5 mol.l-1;          pH = 7.
Calculer la valeur maximale de la différence de potentiel U entre fils garantissant la non oxydation de l'or. On supposera que la pression de formation éventuelle d'hydrogène est égale à 1 bar.
4.3.2 Pour des valeurs de la différence de potentiel U supérieures a celle calculée en 4.3.1, on constate parfois la mise en court-circuit des fils conducteurs par croissance de cristaux d'or filamentaires les reliant.
Donner la raison de l'intervention de ce phénomène sur le plan électrochimique.

Concours Physique Mines de Douai 1988 (Énoncé)

Douai 88         Vibrographe

Étude d’un vibrographe

Soit le vibrographe schématisé ci-dessous :

Le point matériel pesant M de masse m, est suspendu au boîtier par l'intermédiaire d'un ressort de longueur à vide l0 et de raideur k. Ce point M ne peut se mouvoir que verticalement.
On note x l'abscisse de M le long d'un axe vertical descendant dont l'origine O appartient au boîtier.
Un amortisseur exerce sur le point M une force de frottement $\vec F$égale à : $\vec{F}=-\,\vec{v}$, f étant une constante positive et $\vec v$la vitesse de M par rapport au boîtier.
Un cylindre permet d'enregistrer les variations de x en fonction du temps t.




A- OSCILLATIONS LIBRES AMORTIES

Le boîtier est initialement fixe par rapport à un référentiel galiléen.
A-1.      Déterminer l'abscisse xe correspondant à la position d'équilibre du point M.
A-2.a.  Déterminer l'équation différentielle vérifiée par x ( fonction du temps t) lorsque le point M est en mouvement.
A-2.b.  On pose : $\omega _0^2 = \frac{k}{m}$; $Q=\frac{m\,{{\omega }_{0}}}{}$; X = x – xe .
Déterminer l'équation différentielle vérifiée par X, les coefficients de cette équation différentielle dépendant seulement de w0 et de Q.
A-3.      On donne : w0 = 1,80 rad.s-1 ; Q = ½.
Les conditions initiales sont : pour t = 0, X = 0  et $\frac{{dX}}{{dt}} = {V_0}$              (V0 > 0).


A-3.a.  Déterminer X en fonction de t.
A-3.b.  Calculer l'instant t1 pour lequel X passe par un maximum.

B- OSCILLATIONS FORCEES

Q n'est plus égal à ½.
Le boîtier du vibrographe est maintenant fixé sur une machine-outil animée, par rapport à un référentiel (R) galiléen, d'un mouvement de translation rectiligne (suivant la verticale), sinusoïdal, défini par : z = zm cos wt , zm étant une constante et w la pulsation.

B-1.a.    En raisonnant par rapport à un référentiel lié au boîtier du vibrographe, déterminer l’équation différentielle vérifiée par z fonction de t.
B-1.b.   Montrer que cette équation différentielle se met sous la forme suivante (w0, Q et X ayant été définis précédemment ) : $\frac{{{d^2}X}}{{d{t^2}}} + \frac{{{\omega _0}}}{Q}\frac{{dX}}{{dt}} + \omega _0^2\,X = {z_m}\,{\omega ^2}\cos \omega t$.

B-2.a.   Déterminer quelle est, en régime forcé, l'amplitude Xm (des oscillations du point M par rapport au boîtier), en fonction de Q, zm et $u = \frac{\omega }{{{\omega _0}}}$ .
B-2.b.   Montrer que, lorsque u varie, Xm ne passe par un maximum que si Q est supérieur à une certaine valeur que l'on déterminera.
B-2.c.   Cette condition étant remplie, déterminer la valeur maximale Xmax de Xm.



B-3.       Tracer la courbe représentant le rapport $\frac{{{X_m}}}{{{z_m}}}$en fonction de u pour Q = 0,7 puis pour Q = 4.
B-4.       En régime forcé, on appelle f le retard de phase des oscillations du point M (relativement au boîtier) par rapport aux oscillations de la machine-outil (relativement au référentiel (R) galiléen).
B-4.a.   Déterminer cos f et tan f en fonction de u et de Q.
B-4.b.   Montrer que, si la pulsation w est beaucoup plus grande que w0, alors le point M est quasiment fixe par rapport au référentiel (R) galiléen.


Autres Concours

2011  : Concours ENAC de  physique 2011  :  énoncé ,  corrigé Concours ICNA de  physique 2011  :  énoncé ,  corrigé Concours ICNA de ...