Recherche sur le blog!

Affichage des articles dont le libellé est Concours Commun. Afficher tous les articles
Affichage des articles dont le libellé est Concours Commun. Afficher tous les articles

Concours Physique Concours Commun M Physique II 1994 (Corrigé)

Deuxième épreuve Physique II. Mines 94.
Première partie.
1.1. chaque composante Ei ou Bi vérifie l’équation différentielle
Δ Ei + (ω/c)2 Ei = 0 (1)
Les composantes tangentielles du champ électrique E sont nulles sur les parois.
Les composantes normales du champ B sont nulles sur les parois.
Par exemple
paroi, X1 = o : E2 = E3 = o B1 = o
paroi, X1 = a1 : E2 = E3 = o B1 = o
1.2. Le champ proposé vérifie les conditions aux limites. L’application de (1) à l’une des composantes de E donne :
ω2/c2 = π2 Σ (mi/ai)2

1.3. div.3. = o (absence de charge dans la cavité) entraîne :
Σ (mi Ei°/ai) = o (2) soit K.E = 0
Le champ électrique est perpendiculaire au vecteur K.
Pour une pulsation donnée le vecteur champ est déterminé par deux vecteurs de base perpendiculaire à K.
Remarquons aussi que la relation 2 impose une relation entre les Ei ; donc le champ dépend de deux composantes seulement.
1.4. Les deux miroirs sont parallèles et supposés infinis.
L’invariance par translation suivant x2 et x3 entraîne que le champ ne dépend que de x1.
Si on ne s’intéresse qu’aux ondes qui se propagent suivant x1, alors
E1 = o (champ transverse)
E2 = E°2 sin (m1 π x/a1) exp jωt
E3 = E°3 sin (m1 π x/a1) exp jωt
avec m1 π/a1 = ω/c
L’analogie mécanique est le mouvement d’une corde sans raideur liée à ses deux extrémités.
1.5.
dU ω = (ε°/u) [BB*.c2+ E.E* ]. dτ
Il suffit d’intégrer sur le volume.
1.6.
∫∫∫ B.B* dτ = - (1/jω) ∫∫∫ rot E.B*
= (1/jω [∫∫∫ div (E Λ B*) dτ + ∫∫∫ (E.rot.B*) dτ
rot B* = µo εο ((d*E*/dt) = - jω/c2 E*
d’où ∫∫∫ BB* dτ = - 1/jω [∫∫ (E Λ B*). n ds - jω/c2 ∫∫∫. E.E*
or, sur la surface E = o donc
∫∫∫ BB* dτ = 1/c2 ∫∫∫ ( E.E*) dτ
d’où l’expression :
d U = ε°/2 ( E.E*) dτ = u dτ
u = ε°/2 [ (E1 E1*+ E2E2* + E3E3*)
en prenant une valeur moyenne dans l’espace.
<u > = ε°/16 [ (E°1)2 + (E°2)2 + (E°3)2 ]

1.7.
Dans le domaine visible 400 nm < L < 800 nm, calculons l’ordre de grandeur du volume pour lequel on ait M grand.
V = (λ4/8πdλ) M = 1,3.10-20M
Per exemple si M = 100, V = 10-18 m3
Donc une cavité de côté a = 10-6m, il y a 100 modes possibles.
Deuxième partie.
2.1.1. On peut admettre qu’un miroir sphérique est équivalent à une lentille mince dont l’espace du rayon émergent est caractérisé par un milieu d’indice n = -1.
On peut également considérer que le foyer image et le foyer objet se confondent lorsqu’on replie le milieu émergent d’une lentille sur le milieu incident.
La distance focale de chaque lentille est donc R1/2 et R2/2.
Donc N aller-retours dans la cavité est équivalent à la propagation du rayon lumineux dans N motifs {L1 - L2 } , les deux lentilles sont distantes de L.
2.2.1.
α1 (p) = tan α1 (p) = (y2p - y1p) /L.
α2 (p) = (yp+11 - yp2) /L.
2.2.2. soient deux points conjugués A et A’ (A’ est virtuel) sur l’axe.
1/O1A’ - 1/O1A = 1/f’1.
avec α2(p-1) = - y1p/O1A α1p = - yp1/O1A’
d’où α1p - α2p-1 = - y1p/f’1 α2p - α1p = - y1p/f’2.
2.2.3. A partir de 2.2.1. et 2.2.2. , on obtient :
y2p-1 + y2p+1 + (2-u1 u2) y2p = o
soit f’1 f’2 (y2p-1 + y2p+1) + [ 2L (f’1+f’2) - 2f’1f’2 - L2] y2p = o
2.3.1. α1 (p+1) = (y2p+1 - y1p+1 )/L α1 (P) = (y2p - y1p)/L.
d’où y2p+1 - y1p+1 = - y2p + y1p
y2p+1 = - y2p
d’où α1 (p)- α2 (p)=( y1p - y2p + y1p+1 - y2p )= - (2 y2p/L) = - (y1p/f’2)
d’où f’2 = L/2
De même, on montre que les 2 conditions entraînent y2p+1 = - y2p
y2p - y1p - y1p + y2p-1 = - 2 y1p /L = - y1p /f’1
d’où f’1 = L/2.
La construction est classique. Remarquons que
F’1(p) = F2 (p) ; F’2 (p) = F1 (p+1)
F’1 (p+1) = F2 (p+1)

2.3.2. Les distances focales sont égales ; les foyers sont confondus.
Donc, C2 confondu avec S1 et C1 avec S2 .
Cavité confocale : S1 C1 = - S2C2 = L.
2.3.3. On trouve facilement que A et A’ sont confondus après un aller et retour.
2.3.4. En étudiant la progression selon la méthode du 2.3.1., on obtient
. après un aller-retour A’B’ = - AB
. après deux aller-retours A’B ’’ = AB.
On peut aussi le montrer par les relations classiques.
Relation des sinus d’Abbe AB. α = - A’B’ . α’.
AB -- M1 -- A1 B1 -- M2 -- A’B’.
Relation de Newton : FA. FA1 = f2 FA’.FA1 = f2
donc FA=FA’ AB = -A’B’
2.4.1. On remplace dans l’équation
y2p-1 + y2p+1 + (2-u1u2) y2p = o
il vient y2p [4 cos2 (φ/2) - u1u2] = o
donc cos2 φ/2 = u1u2/4
d’autre part o < cos2 (φ/2) < 1.
d’où o < 4 + L2/f’1f’2 - 2L [1/f’1 + 1/f’2] L4.
D’autre part, y2p doit être telle que son module soit inférieure à D/2 exprimant que les rayons restent confinés.
donc si A et A’ sont des réels, alors (A) + (A’) < D/2
2.4.2. Pour une cavité focale y2p+1 = y2p
Dans ce cas, rien n’est possible que si φ = (2k+1) π
D’autre part, si f’1 = f’2 = L/2 u1 = u2 = o et cos2 φ/2 = o
donc φ = π.
Troisième partie.
3.1.1. Pertes par diffusion et absorption si le milieu n’est pas le vide parfait.
Les miroirs diffractent ; une partie de la lumière est alors envoyée à
à l’extérieur de la cavité.
3.1.2. Un faisceau plan monochromatique λ arrivant sur un miroir plan de côté D
diffracte. La tache centrale est localisée dans un cône d’angle θ =λ/D.
Pour que tous les rayons lumineux situés dans ce cône atteigne l’autre
miroir, il faut que θ < D/L.
soit 1< D2/λL = N.

3.2.1. Les relations écrites traduisent le principe d’Huyghens Fresnel.
Chaque point réémet une onde sphérique dont l’amplitude et la phase dépendent
de l’onde incidente.
Le déphasage j = exp (j. π/2) correspond au passage par un foyer.
3.2.2. Soit la projection P1 sur oz
(P1M)2 = [P1H1 + H1H + HM]2
(P1M)2 = (P1H1)2 + (H1H)2 + (HM)2 - 2 H1P1. HM
(P1M)2 = R’1)2 + (H1H)2 - 2 R’1. R.
Le point P1 appartient au cercle de rayon L,
donc
(H1P1)2 + (Z - L)2 = L2 Z cote du point P1
comme D << L, alors Z << L.
d’où Z ≈ (R’1)2/2L.
P1M2 = R2 + z2 + (R’1)2 [1 - z/L]
P1M = z + [R2 - 2.R. R’1 + R’12 (1- z/L)] /2z
on peut donc écrire :
(1/P1M) (exp jk. P1M) = (1/z) (exp jk z) exp (jk/2z) [R2+(R’1)2 (1-z/L) -2R.R’1
Le principe d’Huyghens entraîne alors l’expression donnée dans l’énoncé.
3.2.3. Evaluons U (P2).
U (P2) = Aγ2/L ∫∫s U(P1) K (P1P2) ds.
or K(P1P2) = exp jk/2L [R’21 - 2R’1.R’2]
car z ≈ L et R ≈ R’2
K (P1P2) ≈ exp - (jk/L) R’1.R’2 = exp - j k/L [x1x2 + y1y2)
d’où U (P2) = Aγ2/L ∫∫s1 [K1 exp [- π(R’1)2/D21] exp - (jk/L) (x1x2+y1y2) dx, dy2
car ds ≈ dx1 dy1.
U (P2) = Aγ2K1/ J (x2). J (y2).
avec J (x2) = ∫x1 exp [- π(x21)/D12 - j k/L (x1x2)]. dx1
à l’intervalle de variation de x1 étant étendue à l’∞.
J(x2) = ∫ exp [- (π/D12 )x12 - jk x2x1/L] dx1
J(x2) = ∫ exp - π/D12 [x1 + jkD12x2/L.2 π]2 . exp - k2D21x22//4πL2 . dx1

d’où J (x2) = exp (- k2d12x22D1/4.π.L2)
d’où U (P2) =Aγ2K1L-1.D21 exp (-k2D12 [x22 + y22]/4. π.2L2)
U (P2) = Aγ2K1L-1.D21 exp - (k2D12.R’2/4. π.L2)
or U (P2) = K2 exp [-π (R’2)2/D22]
d’où k2D12/4. π.L2 = π/D22 soit D1D2 = λL
(D21.A γ2K1) = K2.L
Par permutation des indices on obtient en fait, une troisième relation :
(D22. A γ1K2) = K1.L
il vient γ1. γ2. (A. λ)2 = 1.
3.2.4.
A = J/λ alors γ1. γ2 = - 1
donc exp - 2j.k.L = - 1. alors 2J.kL = (2m+1) π
k = π (2m + 1)/2L + ωm/c
ωm = (2m+1) .πc/2L
En reprenant les relations on obtient
K2 = (-1)m K1D1/D2
soit une cavité oscillant à la pulsation xo moyenne.
ωo - Δω/2 < ωo + Δω/2
Le nombre de mode N dans la cavité est égal au nombre d’entiers satisfaisant à
ω = (2m+1) π c/2L dans la bande de pulsation considérée.
Δω = Δm πc/2L soit N = Δm = 2L Δω/πc
soit N = 2L Δλ/.λ.2
Dans le visible, si on prend L = 1µm comme pour la cavité cubique
Δλ = 400 nm λ = 600 nm
N = 2 modes alors que l’on avait 100 modes pour la cavité cubique.
La cavité confocale est donc plus sélective.

Concours Physique Concours Commun TPE 1994 (Corrigé)

Corrigé épreuve physique commune - T.P.E 1994
PREMIER PROBLÈME - ÉLECTRONIQUE
I Référence de tension à diode Zener
I-1)
La loi des mailles et la loi des nœuds fournissent tout d'abord:
$\left\{ \begin{array}{l}{V_1} = {V_2} + R{I_1}\\U = - {V_2}\\{I_1} + I = {I_2}\end{array} \right.$
Il est possible d'obtenir V2 = V1 -R(I2 -I) = f(V1,I2) à condition d'éliminer I. On distingue alors suivant la valeur de U
  • U > Vd ⇔ Dz est en mode passant (Zone 1 de la figure 1)
${{\text{V}}_{\text{2}}}=\frac{{{R}_{d}}}{R+{{R}_{d}}}{{V}_{1}}-\frac{R{{R}_{d}}}{R+{{R}_{d}}}{{I}_{2}}+\frac{R{{V}_{d}}}{R+{{R}_{d}}}\text{ Si }{{\text{V}}_{\text{2}}}<-{{V}_{d}}$
$I = \frac{{U - {V_d}}}{{{R_d}}} = \frac{{ - {V_2} - {V_d}}}{{{R_d}}}$ $ \Rightarrow {\rm{ }}{{\rm{V}}_{\rm{2}}} = {V_1} - \frac{R}{{{R_d}}}({R_d}{I_2} + {V_2} + {V_d})$ d'où le résultat:
  • -Vz < U < Vd ⇔ Dz est en mode bloqué (Zone 2 de la figure 1) alors I = 0
d'où le résultat:
$\Rightarrow \text{ }{{\text{V}}_{\text{2}}}={{V}_{1}}-R{{I}_{2}}\text{ si }{{\text{V}}_{\text{2 }}}<\text{ -}{{\text{V}}_{\text{d}}}$
  • U <- Vz ⇔ Dz est en mode passant inverse (Zone 3 de la figure 1)
$I = \frac{{U + {V_z}}}{{{R_z}}} = \frac{{ - {V_2} + {V_z}}}{{{R_z}}}$ $ \Rightarrow {\rm{ }}{{\rm{V}}_{\rm{2}}} = {V_1} - \frac{R}{{{R_z}}}({R_z}{I_2} + {V_2} - {V_z})$ d'où le résultat:
$\Rightarrow \text{ }{{\text{V}}_{\text{2}}}={{V}_{1}}-\frac{R}{{{R}_{z}}}({{R}_{z}}{{I}_{2}}+{{V}_{2}}-{{V}_{z}})$

I-2)
On en déduit que la caractéristique V2 = f(I2) à V1 Cte est une fonction affine par morceaux
Zone 1:pente= ${\rm{ }}\frac{{{\rm{ - R}}{{\rm{R}}_{\rm{d}}}}}{{R + {R_d}}} \approx - {R_d}$
Zone 2:pente= ${\rm{ }} - R$
Zone 3:pente= ${\rm{ }}\frac{{{\rm{ - R}}{{\rm{R}}_{\rm{z}}}}}{{R + {R_z}}} \approx - {R_z}$
La zone 3 ayant une pente quasi nulle représente le domaine de régulation V2 ≈Vz
Lorsque le point de fonctionnement se trouve dans la zone 1 le courant I2 et la tension V2 sont de signes contraires, ce qui veut dire que l'on a affaire à une charge constituée par un générateur. Les rôles de l'entrée et de la sortie sont inversés.
I-3)
Cette fois les pentes sont:
Zone 1: pente = $\frac{{{{\rm{R}}_{\rm{z}}}}}{{R + {R_z}}} \approx \frac{{{{\rm{R}}_{\rm{z}}}}}{R}$
Zone 2: pente = 1
Zone 3: pente = $\frac{{{{\rm{R}}_{\rm{d}}}}}{{R + {R_d}}} \approx \frac{{{{\rm{R}}_{\rm{d}}}}}{R}$
La zone 3 ayant une pente quasi nulle représente le domaine de régulation V2 ≈Vz
I-4)Dans la zone 3 on a établi que : ${V_2} = \frac{{{R_z}}}{{R + {R_z}}}{V_1} - \frac{{R{R_z}}}{{R + {R_z}}}{I_2} + \frac{R}{{R + {R_z}}}{V_z}$
Donc les variations sont données par: $\Delta {V_2} = \frac{{{R_z}}}{{R + {R_z}}}\Delta {V_1} - \frac{{R{R_z}}}{{R + {R_z}}}\Delta {I_2} = S\Delta {V_1} - \rho \Delta {I_2}$
$S=\frac{{{R}_{z}}}{R+{{R}_{z}}}\approx \frac{{{\text{R}}_{\text{z}}}}{\text{R}}\text{ et }\rho \text{=}\frac{R{{R}_{z}}}{R+{{R}_{z}}}\approx {{R}_{z}}$
II Fonctions à seuil
II-1) L'A-O est en régime linéaire donc V- est nul. Alors puisque E1 est positive, I1 est positif
II-1-a)Si VS est positif (strictement) alors le courant I2 est négatif et I0 est positif (strictement).
Alors i1 =I1 -I2 est positif, donc la diode D1 est passante,
Alors VK = V- = 0 comme VS,
Alors la diode D2 est traversée par i2 positif ou nul ⇒ I2 =I0 +i2 est positif
Il y a donc contradiction logique et VS ne peut pas être strictement positf. II-1-b)Si VS est négatif (strictement) alors le courant I2 est positif et I0 est négatif (strictement).
Alors i2 =I0 -I2 est négatif strictement, mais i2 ne peut être que positif ou nul donc nouvelle contradiction logique et VS ne peut pas être strictement négatif. II-1-c) VS ne peut être que nul (D2 est au repos, D1 traversée par I1 court-circuite R2 ).

II-2) V- est toujours nul. Et puisque E1 est négative, I1 est négatif.
• Si VS est négatif ou nul alors le courant I2 est positif ou nul.
Alors i1 =I1 -I2 est négatif, ce qui n'est pas possible,
VS ne peut pas être strictement négatif ou nul.
• Si VS est positif (strictement) alors le courant I2 est négatif, I0 est positif
Alors i2 =I0 -I2 est positif (strictement), la diode D2 est passante.
Alors VK = VS > 0 la diode D1 est bloquée et on a I1 = I2 ${\rm{ soit }}\frac{{{{\rm{E}}_{\rm{1}}}}}{{{{\rm{R}}_{\rm{1}}}}} = - \frac{{{V_S}}}{{{R_2}}}$ • La seule situation possible est: ${\rm{ }}{{\rm{V}}_{\rm{S}}} = - \frac{{{{\rm{R}}_{\rm{2}}}}}{{{{\rm{R}}_{\rm{1}}}}}{E_1}{\rm{ }}$
II-3)
La caractéristique VS = f(E1) est donnée ci-contre :
C'est celle d'un ampli-inverseur qui au delà d'un certain seuil (zéro ici) est coupé.
II-4)
II-4a) Plusieurs solutions sont possibles pour placer les sources dont les valeurs sont algébriques.
Un schéma classique est représenté ci-contre et en absence d'autres défautson peut dire que l'on a ε = 0
II-4b) Pour un A-O 741 on a typiquement:
Ed de l'ordre de quelques mV
Ip de l'ordre de quelques nA
II-4c)On admet que les défauts ne modifient pas l'état prévu des diodes. Pour E1 > 0 on a D1 passante et D2 bloquée. D'où le schéma:
$\begin{array}{l}{I_2} = {I_0}{\rm{ }} \Rightarrow {\rm{ }}\\\frac{{{{\rm{E}}_{\rm{d}}} - {V_S}}}{{{R_2}}} = \frac{{{V_S}}}{{{R_L}}}\\{V_S} = \frac{{{R_L}}}{{{R_2} + {R_L}}}{E_d}\end{array}$
Mais D2 bloquée ⇒
V- -VS = Ed - VS < 0 impose que Ed <0
Sinon D2 passante est alors VS = Ed
II-5)VS = µε avec ε = V- - V+ = VA Mais l'amplificateur n'ayant pour seul défaut qu'un gain fini on peut écrire, d'après le théorème de Millman:
${{\rm{V}}_{\rm{A}}}\left( {\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}} \right) = \frac{E}{{{R_1}}} + \frac{{{V_S}}}{{{R_2}}}{\rm{ }} \Rightarrow {\rm{ }} - \frac{{{{\rm{V}}_{\rm{S}}}}}{\mu }\left( {\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}} \right) = \frac{E}{{{R_1}}} + \frac{{{V_S}}}{{{R_2}}}{\rm{ }}$
\[{{V}_{S}}=\left( \frac{1}{\mu {{R}_{1}}}+\frac{1}{\mu {{R}_{2}}}+\frac{1}{{{R}_{2}}} \right)=-\frac{E}{{{R}_{1}}}\Rightarrow \frac{{{V}_{S}}}{E}=\frac{-1}{{{R}_{1}}\left( \frac{1}{\mu {{R}_{1}}}+\frac{1}{\mu {{R}_{2}}}+\frac{1}{{{R}_{2}}} \right)}=\frac{-{{R}_{2}}/{{R}_{1}}}{1+\frac{1}{\mu }\left( \frac{{{R}_{1}}+{{R}_{2}}}{{{R}_{1}}} \right)}\] Le montage est donc celui d'un ampli-inverseur idéal rétroactionné par un opérateur de retour β vérifiant: $\beta .(gain{\rm{ ideal) = }}\frac{{\rm{1}}}{{\mu {\rm{b}}}}$ Or on sait qu'une rétroaction diminue le gain de l'opérateur direct. C'est bien vérifié ici.
II-6)
Si les défauts ne modifient pas l'état prévu des diodes. Pour E1<0 D2 est passante, D1 est bloquée. Le théorème de Millman donne:
$\begin{array}{l}{\rm{ }}{V^ - } = - \varepsilon = \frac{{\frac{{{E_1}}}{{{R_1}}} + \frac{{{V_S}}}{{{R_2}}}}}{{\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}}}\\{\rm{et }}\mu \varepsilon = {U_2} + {V_S}\end{array}$
On peut éliminer ε et avoir VS en fonction de g(i2 )=U2
On obtient ainsi:
\[-{{V}_{S}}\left( \frac{1+g({{i}_{2}})/{{V}_{s}}}{\mu } \right)=\frac{\frac{{{E}_{1}}}{{{R}_{2}}}+\frac{{{V}_{S}}}{{{R}_{2}}}}{\frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}}}\Rightarrow {{V}_{S}}=-\frac{\frac{{{E}_{1}}}{{{R}_{1}}}}{\frac{1}{{{R}_{2}}}+\left( \frac{1+g({{i}_{2}})/{{V}_{s}}}{\mu } \right).\left( \frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} \right)}=\frac{{{V}_{0}}}{1+K\left( 1+g({{i}_{2}})/V \right)}\] A condition de poser: ${V_0} = - \frac{{{R_2}}}{{{R_1}}}{E_1}{\rm{ et K = }}\frac{{{{\rm{R}}_{\rm{2}}}}}{\mu }(\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}})$
Si on fait µ → ∞ on retrouve bien le résultat de la question II-2) puisqu'alors K = 0
Si on fait g(i2) ≡ 0 alors on retrouve le résultat de la question II-5), ce qui est satisfaisant.
II-7)Le coefficient K est très faible car le coefficient µ est très grand pour un ampli-op, cela veut dire que l'influence des arrondis sur le comportement réel vis à vis du comportement idéal des diodes est négligeable avec un montage à ampli-op.

III Fonctions à seuil à plusieurs cassures.
III-1) Le théorème de Millman donne immédiatement:
${V^ - } = {V^ + } = 0 = \frac{{\frac{{{V_{S1}}}}{{{R_1}}} + \frac{{{V_{S2}}}}{{{R_2}}} + \frac{{{V_S}}}{{{R_3}}}}}{{\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}} + \frac{1}{{{R_3}}}}}$ soit ${V_S} = - {R_3}(\frac{{{V_{S1}}}}{{{R_1}}} + \frac{{{V_{{S_2}}}}}{{{R_2}}})$
III-2) Les diodes D1 et D2 sont montées têtes bêches deux cas sont à examiner:
Ier Cas: D1 est passante et D2 est bloquée. ⇔ VS1 = V- = 0 (D1 passante)
Alors en vertu du théorème de Millman si D2 est bloquée:
$\frac{{{V_1}}}{R} + \frac{E}{R} = {I_{D1}} > 0$ ⇒ E > -V1
2ème Cas: D1 est bloquée et D2 est passante. ⇔ conséquence sur le théorème de Millman
${V^ - } = 0{\rm{ }} \Rightarrow {\rm{ 0}} = \frac{{{V_1}}}{R} + \frac{{{V_{S1}}}}{R} + \frac{E}{R}$ ⇒ VS1 =-(E+V1) or VS1 < V- = 0 soit E < -V1
Les deux cas possibles de valeurs de E sont donc passés en revue.
III-3)
Cette fois les diodes D3 et D4 sont montées différemment.
On a: V- = V+ = 0
U3 +U4 =VS2 -V- = VS2
Aux bornes d'une diode idéale la tension ne peut être que nulle ou négative, il s'en suit que VS2 ne peut être que négatif ou nul.
Alors les courants I et I0 de la figure seront positifs ou nuls tous les deux
Ier Cas: D3 et D4 sont passantes. ⇔ U3 = U4 = 0 ⇒ VS2 = 0 et I = I0 = 0
${i_3} = - \frac{E}{R} + \frac{{{V_2}}}{R}{\rm{ > 0}}$ (D3 passante) donc il faut que E < V2
2eme Cas: D3 est bloquée - D4 est passante. ⇔ i3 = 0
et conséquence du théorème de Millman: ${{\rm{V}}^{\rm{ - }}} = 0{\rm{ }} \Rightarrow {\rm{ 0}} = \frac{{ - {V_2}}}{R} + \frac{{{V_{S2}}}}{R} + \frac{E}{R}$
VS2 = V2 -E la condition VS2 < 0 impose d'avoir E > V2
3eme Cas: D3 est passante - D4 est bloquée ⇔ i4 = I + I0 = 0 ⇒ I = I0 = 0 et VS2 est nul
${i_3} = - \frac{E}{R} + \frac{{{V_2}}}{R}{\rm{ > 0}}$ (D3 passante) donc il faut que E < V2
4eme Cas: D3 et D4 sont bloquées. ⇔ i4 = I + I0 = 0 ⇒ I = I0 = 0 et VS2 est nul
i3 = 0 (D3 bloquée) il faut que E = V2
Il y a donc deux situations: $\left\{ \begin{array}{l}E > {V_2}{\rm{ }} \Rightarrow {\rm{ }}{{\rm{V}}_{{\rm{S2}}}} = {V_2} - E\\E \le {V_2}{\rm{ }} \Rightarrow {\rm{ }}{{\rm{V}}_{{\rm{S2}}}} = 0\end{array} \right.$
III-4)On fait la synthèse des études précédentes sous forme d'un tableau:
E E < -V1 V1 < E < V2 E > V2
VS1 -(V1 + E) 0 0
VS2 0 0 (V2 - E)
${V_S} = - {R_3}(\frac{{{V_{S1}}}}{{{R_1}}} + \frac{{{V_{S2}}}}{{{R_2}}})$ $\frac{{{R_3}}}{{{R_1}}}({V_1} + E)$ 0 $ - \frac{{{R_3}}}{{{R_2}}}({V_2} - E)$
Ce qui se représente graphiquement par la caractéristique VS =f(E) ci-contre.
La caractéristique obtenue est celle d'une pseudo-diode Zener (cf figure 1) avec la correspondance des grandeurs:
(U,I) → (E,VS)
L'intérêt de ce montage est de réduire les défauts dûs aux arrondis.
III-5) La tension de sortie VS est indépendante du courant de sortie, on a donc en sortie une source de tension parfaite d'impédance de sortie ZS = 0
• • • • • • • • • • • • • •
DEUXIÈME PROBLÈME - MÉCANIQUE
I Étude préliminaire
I-1)
Dans un triangle équilatéral une rotation d'angle 2π/3 autour du point intersection des médianes (hauteur, médiatrices, etc..) laisse invariant le triangle et lui même. Il s'agit donc du centre d'inertie de la plaque homogène.
Sa position est: $AG = \frac{{2h}}{3}$
I-2)
Le moment d'inertie est ici un calcul d'intégrale double:
$I(Ax) = \int_0^h {dy\int_{ - y\tan (30^\circ )}^{y\tan (30^\circ )} {{y^2}.dx} } $
(en convenant que la masse surfacique est unitaire M≡S)
$I(Ax) = 2\int_0^h {dy\left[ {x{y^2}} \right]_0^{y\tan (30^\circ )}} = \frac{2}{{\sqrt 3 }}\left[ {\frac{{{y^4}}}{4}} \right]_0^h$
$I(Ax) = \frac{2}{{\sqrt 3 }}\left[ {\frac{{{h^4}}}{4}} \right]{\rm{ or M}} \equiv {\rm{S = }}\frac{{{{\rm{h}}^{\rm{2}}}}}{{\sqrt 3 }}$ donc $I(Ax) = \frac{{M{h^2}}}{2}$
A-N: I(Ax) = 2,5.10-3 kg.m2
I-3)Les trois côtés sont équivalents pour ce calcul. Donc J(AB) = J(BC). On peut utiliser deux fois le théorème de Huyghens pour calculer ce dernier.
$J(BC) = \left( {I(Ax) - M{{\left( {\frac{{2h}}{3}} \right)}^2}} \right) + M{(\frac{h}{3})^2}$
$J(AB) = \frac{{M{h^2}}}{6}$ A-N: J(AB) = 8,4.10-4 kg.m2
I-4)
Nous calculerons d'abord le moment d'inertie I(Az) puis par le théorème de Huyghens on obtiendra K(Gz).
$I(Az) = \int_0^h {dy\int_{ - y\tan (30^\circ )}^{y\tan (30^\circ )} {({x^2} + {y^2}).dx} } = 2\int_0^h {dy\left[ {\frac{{{x^3}}}{3} + x{y^2}} \right]} _0^{y\tan (30^\circ )}$ $I(Az) = 2\int_0^h {dy\left[ {\frac{{{y^3}}}{{9\sqrt 3 }} + \frac{{{y^3}}}{{\sqrt 3 }}} \right]} = \frac{{20}}{{9\sqrt 3 }}\left[ {\frac{{{y^4}}}{4}} \right]_0^h$
$Avec{\rm{ M}} \equiv {\rm{S = }}\frac{{{{\rm{h}}^{\rm{2}}}}}{{\sqrt 3 }}{\rm{ }} \Rightarrow {\rm{ }}I(Az) = \frac{{20M{h^2}}}{{36}}$ donc
${\rm{K}}(Gz) = I(Az) - M{(\frac{{2h}}{3})^2} = \frac{{20M{h^2}}}{{36}} - \frac{{4M{h^2}}}{9}$ ⇒ ${\rm{K}}(Gz) = \frac{{M{h^2}}}{9}$ A-N: K(Gz)= 5,6.10-4 kg.m2

II Rotation autour d'un côté du triangle
On a affaire à un pendule pesant se déplaçant sans frottement. Il y a conservation de l'énergie mécanique de la plaque. Compte tenu du sens d'orientation de l'axe vertical l'énergie s'écrit:
${E_m} = \frac{1}{2}{J_{AB}}{\dot \alpha ^2} - Mg{z_G} = \frac{{M{h^2}}}{{12}}{\dot \alpha ^2} - Mg\frac{h}{3}\cos \alpha = {C^{te}}$
D'où le résultat cherché ${\dot \alpha ^2} = \frac{{4g}}{h}\cos \alpha $
Le mouvement de G est circulaire, il y donc une accélération centripète et une accélération tangentielle. Au passage par la verticale l'accélération tangentielle est nulle puisque la vitesse est maximale. Il reste alors uniquement la composante centripète que l'on calcule pour α=0
${a_G} = \frac{h}{3}{\dot \alpha ^2} = \frac{{4g}}{3}$ A-N: aG = 13,1 m.s-2
III Mouvement de vissage
III-1)
L'angle θ de rotation du solide est représenté dans le plan de la plaque par l'angle entre GA' et GA. A' est l'intersection de la verticale A0z avec le plan de la plaque. On peut écrire:
$AA' = 2.\frac{{2h}}{3}\sin (\theta /2)$
Cette seconde figure représente la situation dans un plan vertical des points A, A0 et fait apparaître l'ascension du point A jusqu'en A' tel que A0A' = L - zG
La longueur constante du fil se traduit par:
${L^2} = {({z_G})^2} + {(AA')^2}$
${L^2} = z_G^2 + {[\frac{{4h}}{3}\sin (\theta /2)]^2}$
III-2)
D'après le théorème de König ${E_c} = \frac{1}{2}M\dot z_G^2 + \frac{1}{2}{K_{Gz}}{\dot \theta ^2} = \frac{1}{2}M\dot z_G^2 + \frac{{M{h^2}}}{{18}}{\dot \theta ^2}$

III-3)Dans l'hypothèse des petits mouvements on a θ voisin de 0 et zG voisin de L. La relation géométrique devient
${L^2} = z_G^2 + {[\frac{{4h}}{3}\sin (\theta /2)]^2}$ ⇒ ${L^2} = {(L - \varepsilon )^2} + \frac{{4{h^2}{\theta ^2}}}{9}$
Et en dérivant on obtient: $0 = - 2\dot \varepsilon (L - \varepsilon ) + \frac{{8{h^2}\dot \theta \theta }}{9} \approx - 2\dot \varepsilon L + \frac{{8{h^2}\dot \theta \theta }}{9}$
Tandis que la relation de définition de l'énergie cinétique devient:
${E_c} = \frac{1}{2}M{\dot \varepsilon ^2} + \frac{{M{h^2}}}{{18}}{\dot \theta ^2}$ soit en éliminant ε, ${E_c} = \frac{1}{2}M\left[ {\frac{{16{h^4}{{\dot \theta }^2}{\theta ^2}}}{{81{L^2}}} + \frac{{{h^2}{{\dot \theta }^2}}}{9}} \right] = \frac{{M{h^2}}}{{18}}{\dot \theta ^2}\left[ {1 + \frac{{16{h^2}{\theta ^2}}}{{9{L^2}}}} \right]$
Le terme en θ2 est négligeable et on a alors pratiquement ${E_c} = \frac{{M{h^2}}}{{18}}{\dot \theta ^2}$
L'énergie potentielle est Ep =-MgzG =-Mg(L-ε), on écrit alors la constance de l'énergie mécanique:
${E_m} = - Mg(L - \varepsilon ) + \frac{{M{h^2}}}{{18}}{\dot \theta ^2} = {C^{te}}$ par dérivation ⇒ $\frac{{d{E_m}}}{{dt}} = Mg\dot \varepsilon + \frac{{M{h^2}}}{{18}}2\dot \theta \ddot \theta = 0$
Il reste encore à remplacer ε
$Mg\frac{{4{h^2}\dot \theta \theta }}{{9L}} + \frac{{M{h^2}}}{{18}}2\dot \theta \ddot \theta = 0{\rm{ }}$ l'équation des petits mouvements est ${\rm{ }}\ddot \theta {\rm{ + }}\frac{{{\rm{4g}}}}{{\rm{L}}}\theta = 0$
Il s'agit de mouvements sinusoïdaux de période: $T = 2\pi \sqrt {\frac{L}{{4g}}} $ A-N: T= 316 ms
• • • • • • • • • • • • • •

Concours Physique Concours Commun INA-ENSA 1995

Concours Physique Concours Commun INA-ENSA 1995 : énoncé, corrigé

Physique : Un modèle de conductimètre (loi d’ohm, conversion résistance-tension). Chimie : Mesures conductimétriques et synthèse organique.

Concours Physique Concours Commun INA-ENSA 1995

Concours Physique Concours Commun INA-ENSA 1995 : énoncé, corrigé

Fluide en écoulement. Détente de Joule-Thomson. Étude d’un compresseur simple. Étude d’un compresseur avec échangeur de chaleur. Montage à hystérésis.

Concours Physique Concours Commun TPE 1994 (Énoncé)


Ministère de l'équipement,
des transports et du tourisme
concours commun 1994
entpe,ensg,entm,enstimd
composition de physique commune
Temps accordé : 4 heures
(7 pages)
PREMIER PROBLÈME - ÉLECTRONIQUE
Les trois parties sont indépendantes
I Référence de tension à diode Zener
On considère une diode Zéner Dz, dont la caractèristique donnée figure 1 est linéaire par morceaux : zone 1 : branche directe ; zone 2 : branche bloquée ; zone 3 : régime d'avalanche. Cette diode est utilisée dans le montage de la figure 2 qui correspond au plus simple des régulateurs de tension.
I 1) Etablir l'équation donnant la tension V2 aux bornes de la charge en fonction de la tension d'entrée V1 et du courant traversant la charge I2. On distinguera les trois modes de fonstionnement de Dz en précisant les domaines de validité de V2 correspondants.

I 2) En déduire la caractéristique de régulation aval : V2 =f(I2) à tension d'entrée V1 positive ; préciser les pentes de chacune des parties de la courbe ; quelle doit-être la charge quand le point de fonctionnement est dans le zone 1 directe ?
Quelle est la branche utilisée en régulateur de tension ?
On précise que Vd est de l'ordre de 0,6V, Vz de quelques dizaines de volts, Rz et Rd sont faibles devant R ,
et Rz est très faible.
I 3) En déduire aussi la caractéristique de régulation amont V2 = g(V1) à courant I2 donné positif. Quelle est la branche utilisée en régulateur de tension ?
I 4) Donner dans la zone de régulation de tension l'expression des coefficients de régulation S et ρ définis par :
$\Delta {V_2} = S\Delta {V_1}{\rm{ }} - {\rm{ }}\rho \Delta {I_2}$
pour des variations de V1 , I2 notées ΔV1 et ΔI2 .
II Fonctions à seuil
En réalité la caractéristique d'une diode Zener n'est pas linéaire par morceaux et il y a des arrondis dans les courbes obtenues. On peut diminuer ces défauts en utilisant un montage à amplificateur opérationnel.
Soit le montage de la figure 3 dans lequel les diodes à jonction sont idéales (suivant la caractéristique de la figure 4) et l'amplificateur est idéal et fonctionne en régime linéaire.
II 1) On suppose la tension d'entrée E1 positive;
1 a) Montrer que la tension VS ne peut être strictement positive.
1 b) Montrer également qu'elle ne peut être strictement négative.
1 c) En déduire VS .

II 2) On suppose E1 négative ; calculer VS . Interpréter.
II 3) Tracer la caractèristique VS en fonction de E1 .
II 4) Dans cette question on suppose que l'amplificateur, non idéal, est caractérisé par une tension de décalage
en entrée Ed et des courants de polarisation IP+ et Ip-.
4 a) Donner, en régime linéaire, le schéma équivalent de l'amplificateur.
4 b) Donner les ordres de grandeurs de Ed , IP+ et Ip-. (On pourra supposer que l'amplificateur est un 741 ).
4 c) Evaluer alors la tension VS quand E1 positive.

II 5) Soit le circuit inverseur représenté sur la figure 5 dans lequel l'amplificateur en régime linéaire a un coefficient d'amplification µ. Calculer le gain VS/E ( rapport des tensions de sortie et d'entrée ) en fonction de R1 , R2 et µ . Montrer qu'on peut l'écrire sous la forme : gain idéal / (1 + 1/µb).
Donner les valeurs de b et du gain idéal.
Interpréter.
II 6) On considère à nouveau le circuit de la figure 3 dont les diodes sont représentées cette fois par la caractéristique de la figure 6 et dont l'amplificateur a un coefficient d'amplification µ. On suppose E1 négative : calculer VS et montrer qu'on peut mettre cette tension sous la forme :
$Vs = \frac{{{V_0}}}{{1 + K(1 + g({i_2})/{V_S})}}$
Donner les valeurs de K et V0 ; comparer au résultat de II 2 et interpréter en vous aidant éventuellement de la question précédente II 5.

II 7) Conclure sur la fonction seuil étudiée ici.
III Fonctions à seuils à plusieurs cassures.
Dans cette partie les diodes sont idéales (caractéristique figure 4 ) et les amplificateurs sont tous idéaux et fonctionnent en régime linéaire.
III 1) Soit le circuit de la figure 7 . Calculer VS (tension en S) en fonction de VS1 et VS2 (tensions en S1 et S2).
III 2) Soit le circuit de la figure 8. Calculer la tension VS1 en fonction de E et V1 (V1 est une tension imposée positive).
III 3) Soit le circuit de la figure 9. Calculer de même, la tension VS2 en fonction de E et V2 (V2 est une tension imposée positive).
III 4) Soit le montage de la figure 10. Calculer VS ; tracer la caractéristique VS en fonction de E. Conclure en précisant le fonctionnement global du montage et son intérêt.
III 5) Calculer la valeur de l'impédance de sortie du montage 10.
DEUXIÈME PROBLÈME - MÉCANIQUE
On considère une plaque plane (P) homogène, d'épaisseur négligeable, en forme de triangle équilatéral ABC, de côté a et de hauteur h, de masse M. On note $\vec Z{\rm{ }}$la verticale descendante. (figure 1).

On donne M = 300g, a= 15 cm.
Le but du problème sera d'étudier deux mouvements de cette plaque.
- Une rotation autour d'un axe porté par un coté du triangle.
- Une rotation autour d'un axe Gz.
I Étude préliminaire
I 1) Déterminer la position du centre d'inertie G de la plaque (P). (AG en fonction de h).
I 2) Déterminer en fonction de h le moment d'inertie I(Ax) de (P) par rapport à l'axe Ax, parallèle au côté BC et passant par A.
I 3) Déterminer en fonction de h, le moment d'inertie I(AB) de (P) par rapport à l'axe AB. Application numérique.
I 4) Déterminer en fonction de h, le moment d'inertie K(Gz) de (P) par rapport à l'axe Gz passant par G et perpendiculaire au plan de la plaque. Application numérique.
II Rotation autour d'un côté du triangle.
On suppose que la plaque est horizontale, suspendue par trois câbles verticaux, de longueur L constante ( figure 2) reliés respectivement aux trois sommets du triangle, supposés de masse négligeable et sans torsion.
L = 10 cm.
A l'instant t = 0, le câble relié à C est rompu de sorte que le triangle se met à tourner autour de l'axe AB que l'on supposera immobile et asurant une liaison parfaite. On note α l'angle du plan de (P) avec la verticale $\vec Z{\rm{ }}$
et $\vec g{\rm{ }}$l'accélération de la pesanteur supposée uniforme. Trouver la relation entre la vitesse angulaire $\dot \alpha {\rm{ }}$et
l'angle α à tout instant.
Calculer le module de l'accélération de G quand la plaque passe à la position verticale. Application numérique (g = 9,81 S I )
III Mouvement de "vissage".

On revient au montage de la figure 2 ; à partir de la position verticale des câbles, on effectue un mouvement de "vissage " d'axe Gz c'est à dire que le triangle reste à tout moment dans un plan horizontal, le point G se déplaçant sur l'axe Gz vertical fixe et que toute droite liée à (P) tourne d'un même angle .Ce mouvement correspond à une rotation autour d'un axe Gz.
On note A0 , B0 ,C0 ,G0 les positions initiales des points A, B, C, G ; on note z = 0 le plan d'attache des câbles
(z(G0) = L); O est la projection de G0 sur le plan z = 0 et on note θ l'angle (G0A0 , GA) compté positivement autour de Oz.
III-1) Ecrire la relation entre z(G) et l'angle θ tradfuisant que les fils ont une longueur constante.
III 2) Ecrire l'énergie cinétique de (P) en fonction de $\dot z{\rm{ et }}\dot \theta {\rm{ }}$et des constantes.
III 3)Ecrire l'équation différentielle du mouvement dans l'hypothèse de petits mouvements et la résoudre.
Application numérique : Calculer la période.

Concours Physique Concours Commun P’ Physique II 1994 (Énoncé)

A 94 PHYS. II - P'
ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES,
ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE,
DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS,
DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY,
DES TÉLÉCOMMUNICATIONS DE BRETAGNE,
ÉCOLE POLYTECHNIQUE
(OPTION T. A.)
CONCOURS D'ADMISSION 1994
PHYSIQUE
DEUXIÈME ÉPREUVE
OPTION P'
(Durée de l'épreuve : 3 heures)
Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :
PHYSIQUE II - P’.
L'énoncé de cette épreuve, particulière aux candidats de l'option P’, comporte 7 pages.
Tout résultat fourni dans l'énoncé peut être utilisé pour les questions ul­térieures, même s'il n'a pas été démontré. Il est loisible aux candidats d’utiliser la notation vectorielle avec flèches : $\vec V$ pour ${\bf{V}}$.
Première partie: Polarisabilité d'un diélectrique en régime sinusoïdal
Le modèle classique le plus simple de diélectrique est celui de "la charge élastiquement liée" ; on y considère le diélec­trique comme formé d'une collection de porteurs de charges (ou, succinctement, charges), identiques entre eux, de masse $m$ et liés à leurs posi­tions d'équilibre respectives par la force harmonique ${\bf{F}} = - k\,{\bf{OM}} = - m\omega _0^2\,{\bf{OM}}$ où ${\bf{r}} = {\bf{OM}}$ est le vecteur écart par rapport à la posi­tion d'équilibre O. Le terme de "frottement fluide" ${\bf{f}} = - m\eta {\bf{V}} = - m\eta \frac{{d\left( {{\bf{OM}}} \right)}}{{dt}}$ traduira grossièrement ici les diverses sources de perte. On suppose qu'une charge liée, de charge $q$ est soumise au champ électrique sinu­soïdal représenté en notation complexe par ${\bf{E}} = {E_0}\left( {\exp j\omega t} \right){{\bf{\hat u}}_{\bf{x}}}$, où ${{\bf{\hat u}}_{\bf{x}}}$ est le vecteur unitaire de la direction x. En ré­gime permanent forcé, l’expression du déplacement de cette charge est ${\bf{r}} = r\left( {\exp j\omega t} \right){{\bf{\hat u}}_{\bf{x}}}$, où $r = r\left( \omega \right)$ est un nombre complexe.
1) Déduire de l’équation différentielle du mouvement l’équation algébrique satisfaite par $r\left( \omega \right)$. Résoudre cette équation en donnant l’expression de $r\left( \omega \right)$.

2) Le moment dipolaire microscopique ${\bf{p}}$ lié à la charge $q$ étant ${\bf{p}} = q{\bf{OM}}$, montrer que ${\bf{p}}$ s'écrit (en notation complexe) : ${\bf{p}} = {\varepsilon _0}\alpha {\bf{E}}$, où $\alpha \left( \omega \right)$est la polarisabilité complexe. Donner l'expres­sion de $\alpha \left( \omega \right)$ en fonction des données et de la pulsation $\omega $ du champ.
3) Rappeler le lien qualitatif entre champ local et champ macroscopique dans un diélectrique.
Le milieu considéré est électriquement neutre et de moment dipolaire permanent nul. On suppose en outre que toutes les autres charges sont immobiles, c’est-à-dire que seules les charges élastiquement liées contribuent à la polarisation du milieu.
4) On note ${N_0}$ le nombre de charges liées par unité de volume et $\bf{P} = \sum\limits_{{\text{charges  liées }} i} {q\bf{r}_i} = {\varepsilon _0}\chi \bf{E}$ le vec­teur polari­sa­tion (macroscopique) du milieu, ce qui définit la susceptibilité complexe $\chi $. Montrer que $\chi = {N_0}\alpha $ et en déduire l’expression de la permittivité diélec­trique relative ${\varepsilon _r} = {\varepsilon _r}\left( \omega \right)$ :
$\left( A \right)\quad \quad {\varepsilon _r}\left( \omega \right) = 1 + \frac{{{N_0}{q^2}}}{{m{\varepsilon _0}}}\frac{1}{{\omega _0^2 - {\omega ^2} + j\eta \omega }}$.
5) Considérations numériques : on veut comparer la polarisation induite dans un matériau par un champ électrique (expérimentalement accessible !) à la polarisation permanente dans un matériau po­laire. Laquelle de ces deux polarisations est la plus élevée ? Voici quelques indications : La polarisa­bi­lité du carbone à très basse fréquence est ${\alpha _c} = {1,7.10^{ - 40}}$SI. Préciser cette unité. Celle de l’hydro­gène est ${\alpha _H} = {0,7.10^{ - 40}}$SI. Commenter le fait que la polarisabilité de CH4 soit ${\alpha _{C{H_4}}} = {2,9.10^{ - 40}}$SI. Le moment dipolaire des molécules d’un matériau spontanément polarisé a pour valeur typique $p = {6.10^{ - 30}}\;C.m$. Est-il légitime de supposer que, dans des conditions standard de température, tous les moments dipolaires pointent dans la même direction (à la température ambiante, l’énergie ther­mique ${k_B}T$ vaut environ $4 \times {10^{ - 21}}J$) ?

Deuxième partie : rayonnement d'une plaque mince diélectrique
On considère (fig.1) une plaque diélectrique, infinie, homogène, occupant le plan Oxy et d'épaisseur $\Delta z$ très faible devant la longueur d'onde $\lambda $dans le vide du rayonnement en présence. Cette plaque étant placée dans le vide de matière, des sources éloignées envoient sur elle une onde électroma­gnétique plane pro­gressive sinusoïdale, de vecteur d'onde ${\bf{k}} = k{{\bf{\hat u}}_{\bf{z}}} = \frac{\omega }{c}{{\bf{\hat u}}_{\bf{z}}} = \frac{{2\pi }}{\lambda }{{\bf{\hat u}}_{\bf{z}}}$, ($c$ est la célé­rité de la lumière) et de vecteur champ électrique ${{\bf{E}}_{0i}} = {E_{0i}}{{\bf{\hat u}}_{\bf{x}}}\exp j\left( {\omega t - kz} \right)$. La polarisabilité com­plexe et la susceptibilité de la plaque sont celles du milieu étudié dans la pre­mière partie. Sous l'effet du champ électrique ${\bf{E}_{0i}}$ de l'onde incidente, le milieu va donc ac­quérir une polarisa­tion macro­sco­pique ${\bf{P}}\left( t \right)$
sinusoïdale, résultant des dipôles microscopiques $\bf{p} = {\bf{p}_\bf{0}}\exp \left( {j\omega t} \right)$ . Les di­pôles oscil­lants ainsi créés vont à leur tour rayonner eux-mêmes un champ. On veut dé­terminer ce champ.
6) On s'intéresse dans un premier temps au champ rayonné dans la région $z > 0$. Montrer, en utilisant des considérations de symétrie, que le champ rayonné “à droite” s'écrit : ${\bf{E}} = {E_x}{{\bf{\hat u}}_{\bf{x}}}$.
On rappelle que le champ électrique rayonné par un dipôle $\bf{p} = {\bf{p}_\bf{0}}\exp \left( {j\omega t} \right)$à une distance $r$ et dansune direction $\theta $ (fig. 2) s'écrit, dans la zone de rayonne­ment $\left( {r > > \lambda } \right)$ :
$\left( B \right)\quad \quad {\bf{E}}\left( {\bf{M}} \right) = \frac{{{\mu _0}}}{{4\pi }}\left( { - {\omega ^2}} \right){p_0}\frac{{\exp j\left( {\omega t - kr} \right)}}{r}\left( {\sin \theta } \right){{\bf{\hat u}}_\theta }$.
fig. 1 : Plaque mince diélectrique dans le plan Oxy. fig. 2 : Notations pour le champ dipolaire.
Pour éviter dans ce qui suit des problèmes de convergence ou de discontinuités, on suppose que la densité particulaire $N$, égale ici à la densité dipolaire, n'est pas strictement uniforme : elle est constante, égale à ${N_0}$, pour tous les points Q dans une très grande région autour d’un point O du plan choisi pour origine, puis elle tend vers zéro très lentement à l'in­fini, avec une symétrie circulaire, de fa­çon à assurer la convergence de toutes les in­tégrales rencon­trées (fig. 3).
Fig. 3 : Allure possible de la fonction $N$(ρ). fig. 4 : Notations pour le champ rayonné “à droite” par L’axe des ρ est discontinu. un dipôle du milieu, situé au point Q.
7) En utilisant les variables $s = QM$ et $\varphi = \left( {{{{\bf{\hat u}}}_{\bf{x}}},{\bf{OQ}}} \right)$ de la figure 4 et en notant ${\left[ {{{{\bf{\hat u}}}_\theta }} \right]_x}$ la pro­jec­tion sur Ox du vecteur ${{\bf{\hat u}}_\theta }$, montrer que le champ ${\bf{E}}$ en un point $M$ de l’axe Oz s'écrit :
$\left( C \right)\quad \quad {\bf{E}}\left( M \right) = \frac{{{\mu _0}}}{{4\pi }}\left( { - {\omega ^2}} \right){p_0}\left( {\Delta z} \right)\left( {\exp j\omega t} \right)\int\limits_0^{2\pi } {d\varphi } \int\limits_z^\infty {N\left( s \right)\left( {\sin \theta } \right){{\left[ {{{{\bf{\hat u}}}_\theta }} \right]}_x}\left( {\exp - jks} \right)ds} .$

8) On admet que la grandeur $N\left( s \right)\left( {\sin \theta } \right){\left[ {{{{\bf{\hat u}}}_\theta }} \right]_x}$de la relation$\left( C \right)$ varie très lente­ment sur une longueur d'onde et plus précisément que $\left| {\frac{d}{{ds}}\left\{ {N\left( s \right)\left( {\sin \theta } \right){{\left[ {{{{\bf{\hat u}}}_\theta }} \right]}_x}} \right\}} \right| < < \left| {\frac{{N\left( s \right)\left( {\sin \theta } \right){{\left[ {{{{\bf{\hat u}}}_\theta }} \right]}_x}}}{\lambda }} \right|$.
En utilisant une intégration par parties, montrer alors que le champ élec­trique rayonné en $z > 0$ s'écrit :
$\left( D \right)\quad \quad {E_x} = - \frac{1}{2}\left( {j\omega } \right)\left( {{\mu _0}c} \right)\left( {{N_0}{p_0}\Delta z} \right)\exp j\left( {\omega t - kz} \right)$.
9) Déduire de la relation $\left( D \right)$ l'expression du champ électrique rayonné pour $z < 0$.
10) Exprimer alors ${{\bf{p}}_0}$ en fonction de ${{\bf{E}}_{{\bf{0i}}}} = {E_{0i}}{{\bf{\hat u}}_{\bf{x}}}$ et de $\alpha \left( {j\omega } \right)$. En déduire que le champ élec­trique rayonné s'écrit :
$\begin{array}{l}\left( E \right)\quad \quad \left\{ \begin{array}{l}z > 0\,:\quad {E_x} = - \frac{1}{2}\left( {jk} \right)\left( {{N_0}\alpha \Delta z} \right){E_{0i}}\exp j\left( {\omega t - kz} \right),\\z < 0\,:\quad {E_x} = - \frac{1}{2}\left( {jk} \right)\left( {{N_0}\alpha \Delta z} \right){E_{0i}}\exp j\left( {\omega t + kz} \right).\end{array} \right.\\\end{array}$
11) Quelle est la nature de l'onde électromagnétique ainsi rayonnée ?
Troisième partie: propagation dans un diélectrique
On considère maintenant une onde électromagnétique sinusoïdale plane progressive de direction Oz qui arrive sur une plaque diélectrique infinie occupant le demi-espace $z > 0$. Le champ électrique de l'onde inci­dente s'écrivant encore ${{\bf{E}}_{0i}} = {E_{0i}}{{\bf{\hat u}}_{\bf{x}}}\exp j\left( {\omega t - kz} \right)$, on cherche à exprimer le champ à l'intérieur du milieu sous la forme ${\bf{E}} = {E_x}\left( z \right)\left( {\exp j\omega t} \right){{\bf{\hat u}}_{\bf{x}}}$. On rappelle les équations locales du champ électro­ma­gnétique appliquées à une onde plane de vecteur d’onde ${\bf{K}}$ :
${\bf{rotE}} = - j{\bf{K}} \wedge {\bf{E}} = - \frac{{\partial {\bf{B}}}}{{\partial t}} = - j\omega {\bf{B}}$ et ${\bf{rotB}} = - j{\bf{K}} \wedge {\bf{B}} = {\mu _0}\frac{{\partial {\bf{D}}}}{{\partial t}} = j\omega {\bf{D}} = j\omega {\varepsilon _0}{\mu _0}\left[ {1 + \chi \left( \omega \right)} \right]{\bf{E}}$,
d’où l’on déduit immédiatement la “relation de dispersion” : ${K^2} = \left( {1 + \chi } \right)\frac{{{\omega ^2}}}{{{c^2}}} = \left( {1 + \chi } \right){k^2}$. Nous mon­trons dans cette partie comment le modèle microscopique introduit dans les parties précédentes per­met de retrouver et d’interpréter ce résultat classique. On supposera dans ce qui suit que les relations établies précé­demment pour la zone de rayonnement $\left( {r > > \lambda } \right)$ sont en fait applicables partout. Il se trouve que cette manière de pro­céder est admissible ici.

12) Utilisant le fait qu’en un point d’abscisse $z$ positive (fig. 5), le champ total est la somme du champ inci­dent et du champ rayonné par les différentes lames élémentaires d'épaisseur $dz'$à la cote $z'$, à droite et à gauche du point de cote $z$, établir que le champ${E_x}\left( z \right)$ vérifie l'équation intégrale :
${E_x}\left( z \right) = {E_{0i}}\left( {\exp - jkz} \right) - \left( {E_x^ + \left( z \right) + E_x^ - \left( z \right)} \right)$, où
$\begin{array}{c}E_x^ + \left( z \right) = \frac{1}{2}\left( {jk} \right)\left( {{N_0}\alpha } \right)\left( {\exp jkz} \right)\int\limits_z^\infty {{E_x}\left( {z'} \right)\left( {\exp - jkz'} \right)dz'} \\E_x^ - \left( z \right) = \frac{1}{2}\left( {jk} \right)\left( {{N_0}\alpha } \right)\left( {\exp - jkz} \right)\int\limits_0^z {{E_x}\left( {z'} \right)\left( {\exp jkz'} \right)dz'} .\end{array}$
fig. 5 : Décomposition du diélectrique en couches élémentaires.
13) On teste sur l’équation intégrale de la question 12) la solution ${E_x}\left( z \right) = C\exp - j\tilde \beta z$, où $\tilde \beta $ est un nombre complexe. On pose aussi $\tilde \beta = \tilde nk$, ce qui définit l’indice complexe $\tilde n = n - jq$. Quel est le sens physique des réels $n$ et $q$? Quel doit être le signe de la partie imaginaire de $\tilde \beta $ ? Exprimer ${\tilde n^2}$en fonction de la susceptibilité $\chi = {N_0}\alpha $.
14) En insérant la solution physiquement acceptable dans l'équation intégrale de la question 12), montrer que la valeur de la constante adéquate $C$ est : $C = \frac{{2{E_{0i}}}}{{\tilde n + 1}}$.
15) En sommant les champs rayonnés dans la région $z < 0$ par toutes les lames minces d'épais­seur $dz'$, montrer que l'expression du champ électrique réfléchi par le diélectrique se met sous la forme : ${{\bf{E}}_{\bf{r}}} = \tilde r{E_{0i}}{{\bf{\hat u}}_{\bf{x}}}\exp j\left( {\omega t + kz} \right)$, où $\tilde r = - \frac{{\tilde n - 1}}{{\tilde n + 1}}$ est le coefficient de réflexion en amplitude.
16) Montrer que, si le coeffi­cient de frottement $\eta $ est nul, tout se passe comme si le champ total se propageait à la vitesse de phase $\frac{c}{n}$. Cela est-il vrai quelle que soit la pulsation ω ?

Quatrième partie: diffraction par un écran opaque
On considère un écran mince d’épaisseur $\Delta z$ infini suivant Oxy, situé en z = 0, formé d'un matériau diélectrique totalement opaque à la pulsation $\omega $ et on admet que le champ électromagnétique rayonné par cet écran est assimilable à celui qui a été calculé dans la deuxième partie de ce problème. Dans toute cette quatrième partie, le coefficient de frottement $\eta $ sera, pour la commodité du calcul, supposé nul.
17) En utilisant le fait que l'écran est totalement opaque, montrer que le vecteur polarisation $\bf{P} = {\bf{P}_\bf{0}}\exp \left( {j\omega t} \right)$ vérifie la relation: ${\bf{E}_{\bf{0i}}} = \frac{1}{2}\left( {j\omega } \right)\left( {{\mu _0}c} \right){\bf{P}_\bf{0}}\Delta z$.
On ôte de la plaque précédente un "bouchon" diélectrique de forme quelconque (fig. 6). On obtient ainsi un écran percé d'une ouverture de forme quelconque, supposée cependant de dimension ca­rac­téris­tique grande devant la longueur d'onde. De ce fait, on supposera que la distribution de polari­sa­tion sur la plaque percée est pratiquement la même que celle de la plaque infinie. On cherche le champ électro­magnétique à droite de la plaque percée, c'est à dire le champ diffracté par l'ouverture.
fig. 6 : Diffraction par une ouverture dans fig. 7 : Notations pour la diffraction à l’infini.
une plaque diélectrique infinie. (Dimension de l’ouverture exagérée)
18) Montrer que le champ rayonné par la plaque percée d'un trou est identique, au signe près, au champ qui serait rayonné par le "bouchon" de diélectrique tout seul avec une distribution de polarisa­tion identique à celle de la plaque infinie.
19) Soient O un point "moyen" sur l'ouverture Σ et M un point en avant de l'ouverture, éloigné et situé de telle manière que l'angle entre OM et la normale au plan reste très faible (fig. 7). Les notations étant celles de la figure 7, montrer que le champ élec­trique rayonné en avant de la plaque s'écrit :
$\left( F \right)\quad \quad {{\mathbf{E}}_{\mathbf{rayonn\acute{e}}}}=-\frac{jk}{2\pi }{{E}_{0i}}{{\mathbf{\hat{u}}}_{\theta }}$
20) Comparer l’expression du champ rayonné -relation $\left( F \right)$- à celle résultant de l’application du principe d’Huygens-Fresnel. En particulier quelle phase l'expression $\left( F \right)$ conduit-elle à attribuer aux ondes élémentaires qui interviennent dans le principe d’Huygens-Fresnel ?
On souhaite appliquer la relation $\left( F \right)$ au cas où l’ouverture est rectangulaire de côtés a et b et de centre O (fig. 8). L'écran d'observation est un plan parallèle à l’ouverture situé à la distance D de O.
fig. 8 : Diffraction à l’infini par une ouverture rectangulaire centrée.
21) Montrer que, dans le cadre de la diffraction à l'infini (et toujours dans le cas des angles petits), la relation $\left( F \right)$peut s'écrire :
$\left( G \right)\quad \quad {{\mathbf{E}}_{\mathbf{rayonn\acute{e}}}}\approx \frac{jk}{2\pi }{{E}_{0i}}{{\mathbf{\hat{u}}}_{x}}\left( \frac{\exp j\left( \omega t-kD \right)}{D} \right)\iint_{\left( \Sigma \right)}{\left( \exp jk{{{\mathbf{\hat{u}}}}_{\mathbf{d}}}.\mathbf{OQ} \right)dS\left( Q \right)}$
22) Toujours dans le cas de l'ouver­ture rectangulaire de la figure 8, calculer ${\bf{E}}$ en un point M de l'écran d'observation de coordonnées ${X_m}$ et ${Y_m}$.
23) Décrire rapidement la distribution de l’intensité lumineuse$I = \left( {{\rm{une constante}}} \right)EE*$ sur l'écran. En particulier, expliquer qualitativement pourquoi, pour une fente donnée, l'intensité lumi­neuse au centre diminue quand la longueur d'onde augmente.

Concours Physique Concours Commun M Physique II 1994 (Énoncé)

A 94 PHYS. II - M
ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES,
ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE,
DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS,
DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY,
DES TÉLÉCOMMUNICATIONS DE BRETAGNE,
ÉCOLE POLYTECHNIQUE
(OPTION T.A.)
CONCOURS D'ADMISSION 1994
PHYSIQUE
DEUXIÈME ÉPREUVE
OPTION M
(Durée de l'épreuve : 3 heures)
Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :
PHYSIQUE II - M.
L'énoncé de cette épreuve, particulière aux candidats de l'option M , comporte 7 pages.
QUELQUES PROPRIÉTÉS CARACTÉRISTIQUES DES CAVITÉS OPTIQUES
Ce problème comporte trois parties pouvant être abordées indépendamment les unes des autres. Il concerne quelques propriétés caractéristiques des cavités optiques. Dans une première partie, on étudie la structure d’une cavité parallélépipédique fermée. Dans la deuxième partie, on étudie dans le cadre de l’optique géométrique une cavité ouverte, limitée par deux miroirs sphériques ; cette confi­gu­ration pallie certaines limitations des propriétés parallélépipédiques. Les effets diffractifs dans de telles cavi­tés sont pris en compte dans la troisième partie.
Dans tout le problème, l’espace est rapporté à un repère R muni d’une base orthonormée directe (e1, e2, e3). Un champ électromagnétique, mono­chromatique de pulsation $\omega $, sera représenté par l’en­semble des vecteurs ${\bf{E}}$ et ${\bf{B}}$, de composantes respectives ${E_i}$ et ${B_i}$ (i = 1, 2 ou 3) avec, par exemple, ${E_i}(M,t) = {\mathop{\rm Re}\nolimits} \left[ {\underline {{E_i}} (M,t)} \right]$. Les cavités sont supposées être vides de charge.

PREMIÈRE PARTIE : CAVITÉ PARALLÉLÉPIPÉDIQUE FERMÉE
On considère une cavité parallélépipédique limitée par des plans infiniment conducteurs ; les longueurs des arêtes sont a1, a2 et a3 dans les directions orthogonales respectives Ox1, Ox2 et Ox3.
I-1) Donner l’équation de propagation du champ électromagné­tique monochromatique de pulsa­tion $\omega $ et préciser les conditions aux limites relatives aux champs ${\bf{E}}$ et ${\bf{B}}$.
I-2) La résolution de l'équation de propagation, compte tenu des conditions aux limites, conduit à considérer trois -et trois seulement- familles de solutions, dépendant de trois nombres entiers naturels ${m_1},{m_2}$ et ${m_3}.$ On pose ${j^2} = - 1.$ Vérifier que le champ représenté par les trois relations ci-après consti­tue une solution du problème de propagation :
$\begin{array}{l}\underline {{E_1}} ({x_1},{x_2},{x_3};t) = \underline {E_1^0} \cos \left( {{m_1}\pi \frac{{{x_1}}}{{{a_1}}}} \right)\sin \left( {{m_2}\pi \frac{{{x_2}}}{{{a_2}}}} \right)\sin \left( {{m_3}\pi \frac{{{x_3}}}{{{a_3}}}} \right)\exp \left( {j\omega t} \right)\\\underline {{E_2}} ({x_1},{x_2},{x_3};t) = \underline {E_2^0} \sin \left( {{m_1}\pi \frac{{{x_1}}}{{{a_1}}}} \right)\cos \left( {{m_2}\pi \frac{{{x_2}}}{{{a_2}}}} \right)\sin \left( {{m_3}\pi \frac{{{x_3}}}{{{a_3}}}} \right)\exp \left( {j\omega t} \right)\\\underline {{E_3}} ({x_1},{x_2},{x_3};t) = \underline {E_3^0} \sin \left( {{m_1}\pi \frac{{{x_1}}}{{{a_1}}}} \right)\sin \left( {{m_2}\pi \frac{{{x_2}}}{{{a_2}}}} \right)\cos \left( {{m_3}\pi \frac{{{x_3}}}{{{a_3}}}} \right)\exp \left( {j\omega t} \right).\end{array}$
Établir aussi la relation :
$\omega ({m_1},{m_2},{m_3}) = c\sqrt {{{\left( {\frac{{{m_1}\pi }}{{{a_1}}}} \right)}^2} + {{\left( {\frac{{{m_2}\pi }}{{{a_2}}}} \right)}^2} + {{\left( {\frac{{{m_3}\pi }}{{{a_3}}}} \right)}^2}} ,$$c$ est la célérité de la lumière.
I-3) Exprimer la relation qui, en l’absence de charge dans la cavité, lie $\underline {E_1^0} ,\underline {E_2^0} {\rm{ }}$,$\underline {E_3^0} $, ${m_1},{m_2}$ et ${m_3}$ et l'interpréter géométriquement, en faisant intervenir au besoin le vecteur ${\bf{K}}$ dont les composantes dans R sont $\frac{{{m_1}}}{{{a_1}}},\,\frac{{{m_2}}}{{{a_2}}}$ et $\frac{{{m_3}}}{{{a_3}}}.$ Déduire de l’étude qui précède que la solution la plus générale du problème de propagation correspondant à une pulsation $\omega $ donnée peut être considérée comme la combinaison linéaire de deux solutions indépendantes, appelées modes, l’une d’entre elles correspondant par exemple à $\underline {E_3^0} $ = 0.
I-4) On considère, dans cette question seulement, une cavité constituée par deux miroirs plans parfaitement conducteurs, parallèles au plan (e2, e3) et situés respectivement en x1 = 0 et x1 = a1. Décrire les modes dans cette cavité (polarisations, pulsations possibles). Indiquer une analogie mé­canique simple de cette configuration.
I-5) La relation ${{U}_{\omega }}=\underset{T\to \infty }{\mathop{\lim }}\,\frac{1}{T},$ où ${W_\omega }\left( t \right)$ est l’énergie électromagnétique instantanée au temps t dans la cavité parallélépipédique fermée, définit l’énergie électromagnétique moyenne,${U_\omega }$, dans cette cavité. Exprimer ${U_\omega }$ sous la forme d’une intégrale sur le volume V de la cavité, faisant intervenir la re­présentation complexe du champ : $\left( {\underline {{{\bf{E}}_\omega }} ,\underline {\,{{\bf{B}}_\omega }} } \right)$ et celle de son complexe conjugué $\left( {\underline {{\bf{E}}_\omega ^ * } ,\,\underline {{\bf{B}}_\omega ^ * } } \right)$.
I-6) Montrer, à partir des équations de Maxwell, des conditions aux limites et de l’i­dentité vecto­rielle $div\,(\underline {\bf{E}} \wedge rot\underline {{{\bf{E}}^ * }} ) = rot\underline {{{\bf{E}}^ * }} .rot\underline {\bf{E}} - \underline {\bf{E}} .rot(rot\underline {{{\bf{E}}^ * }} )$, que :
$\underline{\mathbf{E}_{\omega }^{*}}d\tau ={{c}^{2}},$ où $d\tau = d{x_1}d{x_2}d{x_3}.$
En déduire que la densité volumique moyenne d'énergie électromagnétique, ${u_\omega } = \frac{{{U_\omega }}}{V}$ , s’écrit
${u_\omega } = \frac{{{\varepsilon _0}}}{{16}}\left( {{{\left| {\underline {E_1^0} } \right|}^2} + {{\left| {\underline {E_2^0} } \right|}^2} + {{\left| {\underline {E_3^0} } \right|}^2}} \right)$.
I-7) Un calcul, non demandé ici, établit qu’une estimation du nombre $M$ de modes dans le do­maine de pulsa­tions $\left[ {\omega ,\omega + \Delta \omega } \right]$ suffisamment étendu pour que $M$ soit grand devant 1, est $M \approx \frac{{V{\omega ^2}}}{{{\pi ^2}{c^3}}}\Delta \omega .$ Montrer par un calcul d’ordre de grandeur qu’une cavité parallélépipé­dique fermée du type précédent n’est absolument pas appropriée pour sélectionner un petit nombre de modes (une centaine, par exemple) dans le domaine de pulsations limitant le rayonnement visible.

DEUXIÈME PARTIE : CAVITÉ OUVERTE, À RÉFLECTEURS SPHÉRIQUES
On envisage alors (fig.1) une cavité ouverte, limitée par deux miroirs sphériques (M1) et (M2) d’épais­seur négligeable, de centres respectifs C1 et C2, de sommets respectifs S1 et S2 et de diamètre d’ou­verture commune D.
On pose : $\overline {{S_1}{S_2}} = L,\;\,\,\;\overline {O{S_1}} = - {e_1},\,\,\,\;\overline {{S_1}{C_1}} = {R_1},\;\,\,\;\overline {O{S_2}} = {e_2} = L - {e_1}\,\;$et $\overline {{S_2}{C_2}} = - {R_2}.$

fig. 1 : Cavité ouverte, limitée par deux miroirs sphériques.
(Pour des raisons de lisibilité de la figure, la dimension des miroirs a été exagérée).
On se propose d’é­tudier dans cette partie les conditions permettant de confiner dans cette cavité un rayonnement mo­nochromatique de pulsation $\omega .$ On suppose à cette fin $Inf{\kern 1pt} \,\left( {\,\left| {\overline {{S_1}{C_1}} } \right|\,,\,\left| {\overline {{S_2}{C_2}} } \right|\,,L\,} \right)\,\, > > D$ et on néglige les effets de diffraction : le rayonnement sera donc supposé se propager conformément aux lois de l’op­tique géométrique.
1. Dépliement de la cavité
II-1-1) Montrer que les hypothèses faites impliquent que les conditions de Gauss sont satisfaites.
II-1-2) Montrer que l’étude de la marche d’un rayon lumineux effectuant N aller-retours dans la cavité de la figure 1 est équivalente (fig. 2, page 4) à celle d’un rayon lumineux rencontrant N fois le même motif constitué de deux lentilles minces $\left( {{L_1}} \right)$et $\left( {{L_2}} \right)$ distantes de $L$, dont on précisera les distances fo­cales images $f_1^{'}$ et$f_2^{'}$ en fonction de ${R_1}$ et de ${R_2}.$
fig. 2 : Dépliement de la cavité
Un aller-retour est équivalent à la traversée d'un motif constitué de deux lentilles minces.
2. Propagation d’un rayon lumineux
On considère le rayon issu de $\left( {L_1^{(p)}} \right)$, émergeant à une hauteur algébrique $y_1^{(p)} = \overline {O_1^{(p)}I_1^{(p)}} $ sous un angle algébrique $\alpha _1^{(p)}$, puis émergeant de $\left( {L_2^{(p)}} \right)$ sous une hauteur$y_2^{(p)} = \overline {O_2^{(p)}I_2^{(p)}} $ et ainsi de suite.
II-2-1) Établir deux relations purement géométriques entre $\;\alpha _1^{(p)},\;y_2^{(p)},y_1^{(p)}\;$ et $L$ d'une part,
$\;\alpha _2^{(p)},\;y_1^{(p + 1)},\;y_2^{(p)}$ et $L$ d'autre part.
II-2-2) Établir aussi les deux relations de récurrence : $\begin{array}{l}\left\{ \begin{array}{l}\alpha _1^{(p)} - \alpha _2^{(p - 1)} = - \frac{{y_1^{(p)}}}{{f_1^{'}}}\\\alpha _2^{(p)} - \alpha _1^{(p)} = - \frac{{y_2^{(p)}}}{{f_2^{'}}}.\end{array} \right.\\\end{array}$
II-2-3) Déduire de l’ensemble de ces résultats la relation de récurrence liant $y_2^{(p)},\;y_2^{(p + 1)}$et$y_2^{(p - 1)};$ on pourra trouver commode de poser ${u_i} = \left( {2 - \frac{L}{{f_i^{'}}}} \right),\;i = 1,2.$
3. Cavité confocale
II-3-1) Montrer qu’il est possible de choisir les caractéristiques de $\left( {{L_1}} \right)$ et de $\left( {{L_2}} \right)$ de telle manière que, pour tout p, l'on ait simultanément $y_1^{(p + 1)} = - \,y_1^{(p)}$ et $\alpha _1^{\left( {p + 1} \right)} = - \,\alpha _1^{(p)}$. Représenter ce cas particu­lier sur une figure, où l’on indiquera notamment les foyers objet $F_1^{(p)},\,\;F_2^{(p)}$ et image $F_1^{'(p)},F_2^{'(p)}$ des lentilles $\left( {L_1^{(p)}} \right)$ et $\left( {L_2^{(p)}} \right)$ du mo­tif numéro p. Construire aussi un rayon issu d’un point A sur l’axe tom­bant sur $\left( {L_1^{(p)}} \right)$ et émergeant de $\left( {L_2^{(p + 1)}} \right)$après avoir traversé $\left( {L_2^{(p)}} \right)$ et $\left( {L_1^{(p + 1)}} \right)$.
II-3-2) Justifier le fait que la cavité satisfaisant les relations de la question II-3-1) soit dite “confocale” et donner la figure 1’, déduite de la figure 1 dans ce cas particulier.
II-3-3) En s’appuyant sur une construction géométrique soignée, dont on explicitera clairement l’éla­boration, trouver l’image A’ d’un point A sur l’axe optique, après un aller-retour de la lumière dans la cavité de la figure 1’.
II-3-4) De la même manière, déterminer l’image ${\bf{A}}'{\bf{B}}'$ (respectivement ) d’un petit objet ${\bf{AB}}$ or­thogonal à l’axe optique, après un ( respectivement deux) aller retour dans la cavité de la figure 2.
4. Condition de stabilité d’une cavité fermée par deux miroirs sphériques
La cavité de la figure 1 sera dite stable si, après un nombre arbitrairement élevé de traversées du motif $\left[ {\left( {{L_1}} \right) - \left( {{L_2}} \right)} \right]$, le rayon reste proche de l’axe optique. On suppose qu’il en est effectivement ainsi et l’on pose, dans le système de la question II-2-3), $y_2^{(p)} = A\exp ip\varphi + A'\exp - ip\varphi $.
II-4-1) Déterminer l’équation vérifiée par $\varphi $ et en déduire l’inégalité traduisant la stabilité de la cavité.
II-4-2) Commenter le cas particulier d’une cavité confocale, telle qu’elle a été introduite dans la ques­tion II-3-2). Quelle est la valeur de $\varphi $ dans ce cas particulier ?

TROISIÈME PARTIE : DIFFRACTION DANS UNE CAVITÉ CONFOCALE
On considère maintenant, dans la cavité de la figure 1, les phénomènes de diffrac­tion d’un rayonne­ment mo­nochromatique de longueur d’onde dans le vide $\lambda = 2\pi \frac{c}{\omega }$. Les paramètres$L,\;\overline {{S_1}{C_1}} $ et $\overline {{S_2}{C_2}} $ sont ajustés de manière à satisfaire la condition de stabilité de la question II-4-2) et l’inégalité
$Inf{\kern 1pt} \,\left( {\,\left| {\overline {{S_1}{C_1}} } \right|\,,\,\left| {\overline {{S_2}{C_2}} } \right|\,,L\,} \right)\,\, > > D$ est toujours satisfaite.
1. Arguments qualitatifs généraux
III-1-1) Donner des exemples de pertes que peut subir le rayonnement dans la cavité. En particulier, préciser comment la diffraction d’un faisceau incident sur un miroir plan de diamètre d’ouverture $D$ peut être à l’origine de pertes d’énergie électromagnétique.
III-1-2) On pose $N = \frac{{{D^2}}}{{L\lambda }}$ ; justifier par des arguments qualitatifs que le nombre $\frac{1}{N}$ permet d’évaluer les pertes de rayonnement dus aux phénomènes de diffraction. On pourra raisonner ici sur des miroirs plans de diamètre $D$.
2. Description du rayonnement dans la cavité
On se propose d’étudier le rayonnement dans la cavité, en appliquant le principe d’Huygens-Fresnel aux deux miroirs (M1) et (M2). On admettra que le diamètre d’ouverture $D$ et la longueur $L$ séparant les sommets des miroirs (fig. 3) sont suffisamment grands pour que l’on puisse appliquer la théorie scalaire de la diffraction et on se limitera à une cavité confocale (cf. II-3-2 : ${R_1} = {R_2} = L$).
fig. 3 : Cavité confocale.
Pour des raisons de lisibilité, la dimension des miroirs et la distance qui les sépare ont été exagérés.
Soient : $\begin{array}{l}{\bf{R}}_1^{'} = {{\bf{S}}_1}{{\bf{P}}_{1 \bot }} = {{\bf{S}}_1}{{\bf{P}}_1} - ({{\bf{S}}_1}{{\bf{P}}_1}.{{\bf{e}}_z}){{\bf{e}}_z} = {x_1}{{\bf{e}}_x} + {y_1}{{\bf{e}}_y},\\{\bf{R}}_2^{'} = {{\bf{S}}_2}{{\bf{P}}_{2 \bot }} = {{\bf{S}}_2}{{\bf{P}}_2} - ({{\bf{S}}_2}{{\bf{P}}_2}.{{\bf{e}}_z}){{\bf{e}}_z} = {x_2}{{\bf{e}}_x} + {y_2}{{\bf{e}}_y},\\{\bf{R}} = {\bf{HM}} = x{\kern 1pt} {{\bf{e}}_x} + y{\kern 1pt} {{\bf{e}}_y}\quad et\quad \overline {{S_1}H} = z.\end{array}$
On note $\underline {{u_i}} ({P_1})$ l’amplitude complexe d’une onde monochromatique inci­dente sur (M1) au point ${P_1}({x_1},{y_1},{z_1})$. L’amplitude complexe $\underline {{u_d}} (M)$ diffractée par (M1) au point $M$ à l’intérieur de la cavité s’écrit alors, en supposant les miroirs parfaitement réfléchissants :
$\underline{{{u}_{d}}}\left( M \right)=A\iint_{{{S}_{1}}}{\underline{{{u}_{i}}}\left( {{P}_{2}} \right)\frac{{{e}^{jk{{P}_{1}}M}}}{{{P}_{1}}M}}d{{S}_{1}}$
$A\;\left( {A = \frac{j}{\lambda }} \right)$est une constante sans importance pour le moment. On note de façon analogue l’amplitude $\underline {{u_i}} ({P_2})$d’une onde monochromatique incidente sur le miroir (M2), de sorte que “pour l’indice 2” :
$\underline{{{u}_{d}}}\left( M \right)=A\iint_{{{S}_{2}}}{\underline{{{u}_{i}}}\left( {{P}_{2}} \right)\frac{{{e}^{jk{{P}_{2}}M}}}{{{P}_{2}}M}}d{{S}_{2}}$

III-2-1) Commenter ces relations, en s’appuyant sur le principe de Huygens. On décrira en particulier la nature et les phases relatives des différentes ondes.
III-2-2) En supposant $D$<<z, montrer que, si ${K_1}({P_1},M) = \exp \left[ {\frac{{jk}}{{2z}}\left\{ {\left( {1 - \frac{z}{L}} \right){{\left( {R_1^{'}} \right)}^2} + {R^2} - 2{\bf{R}}.{\bf{R}}_1^{'}} \right\}} \right]$, alors : $$, où $k = \frac{{2\pi }}{\lambda }$.
Il est possible de montrer que, en régime permanent et pour une cavité confocale, les amplitudes sur (M1) et sur (M2) sont liées entre elles par les relations intégrales :
$\underline{u}\left( {{P}_{1}} \right)=\frac{A{{\gamma }_{1}}}{L}\iint_{{{S}_{2}}}{\underline{u}\left( {{P}_{2}} \right)K\left( {{P}_{2}},{{P}_{1}} \right)d{{S}_{2}}}$, et
$\underline{u}\left( {{P}_{2}} \right)=\frac{A{{\gamma }_{2}}}{L}\iint_{{{S}_{1}}}{\underline{u}\left( {{P}_{1}} \right)K\left( {{P}_{1}},{{P}_{2}} \right)d{{S}_{1}}}$,
${\gamma _1}$ et ${\gamma _2}$ sont des constantes complexes et $K({P_1},{P_2}) = \exp ( - \frac{{jk}}{L}{\bf{R}}_1^{'}.{\bf{R}}_2^{'}).$
III-2-3) Vérifier que, si le diamètre d'ouverture $D$ est suffisamment grand, une solution possible du système couplé de la question III-2-2) est fournie par les faisceaux gaussiens :
$\underline u ({P_1}) = {K_1}\exp - \frac{{\pi {{\left( {R_1^{'}} \right)}^2}}}{{D_1^2}}\quad {\rm{et}}\quad \underline u ({P_2}) = {K_2}\exp - \frac{{\pi {{\left( {R_2^{'}} \right)}^2}}}{{D_2^2}},$
${K_1}$,${K_2}$,${D_1}$ et${D_2}$ sont des constantes, ${D_1}{\rm{ et }}{D_2} < < D$. Montrer que${D_1}{D_2} = \lambda L$ et en déduire la relation liant $A,\,{\gamma _1},\,{\gamma _2}\,\,{\rm{et}}\,\lambda $. On donne, pour $\alpha \in {\Re ^ + }$ et $\beta \in \Re $ : $\text{ }=\sqrt{\frac{\pi }{\alpha }}\quad $.
III-2-4) Pour cette dernière question, il faut prendre en compte explicitement l'égalité $A\; = \frac{j}{\lambda }$.
Lorsque les miroirs sont parfaitement réfléchissants, ${\gamma _1} = {\gamma _2} = \exp {\kern 1pt} \,( - {\kern 1pt} jkL).$ Montrer que cette rela­tion implique que les pulsations des modes permis dans la cavité sont $\omega = {\omega _m} = \left( {2m + 1} \right)\frac{{\pi c}}{{2L}}.$ Quelle est alors la relation (dépendant de $m$) entre ${D_1},{D_2},{K_1}\;\,et\;\,{K_2}\;?$
Conclure en comparant les propriétés de sélectivité de mode entre une cavité parallélépipédique fer­mée et une cavité confocale ouverte.

Autres Concours

2011  : Concours ENAC de  physique 2011  :  énoncé ,  corrigé Concours ICNA de  physique 2011  :  énoncé ,  corrigé Concours ICNA de ...