Recherche sur le blog!

Concours commun Mines-Ponts (M, P', TA) 1990 Physique I (Énoncé)

Mines–Ponts, M, P’, TA, 1990 (Physique I)
Le moteur à fils de caoutchouc
  1. Thermodynamique d’un fil de caoutchouc.
    Les paramètres thermodynamiques d’un fil de caoutchouc sont la longueur $L$, la tension $F$ et la température $T$. Au voisinage d’une température moyenne $T_m$, d’une longueur moyenne $L_m$ et d’une tension moyenne $F_m$, l’équation d’état est linéarisable et prend la forme: \[F(L,T) = F_m + \rho \left(L - L_m\right) + \sigma\left(T - T_m\right)\]$\rho$ et $\sigma$ sont des constantes positives. Le travail élémentaire reçu quand le fil s’allonge de ${\mathrm{d}}L$ lors d’une transformation réversible est noté $\delta W = F {\mathrm{d}}L$. On désigne par $C_L$ la capacité calorifique du fil à longueur constante et on note la chaleur reçue dans une transformation élémentaire par: \[\delta Q = C_L {\mathrm{d}}T + h {\mathrm{d}}L\] $h$ étant a priori une fonction de $T$ et $L$. On suppose enfin que $C_L$ est indépendant de la température.

    1. À l’aide de l’expression différentielle des deux principes de la thermodynamique, exprimer $h$ en fonction de $T$ et de $\sigma$.
    2. Montrer que $C_L$ ne dépend pas de $L$; on dira que $C_L$ est une constante.
    3. Donner l’expression de l’entropie du fil, $S(T,L)$, en fonction de la longueur $L$, de la température $T$ et de $T_m$, $L_m$, $C_L$ et $\sigma$. On posera $S_m = S(T_m,L_m)$.
    4. On tire sur le fil de façon isotherme. Quel est le signe de la variation d’entropie? Déterminer l’expression et indiquer le signe de la variation d’entropie d’une mole de gaz parfait dont le volume augmente de façon isotherme; commenter le résultat obtenu, sachant que le fil de caoutchouc est un polymère constitué de longues chaînes de molécules.
    5. Déterminer l’expression de l’énergie libre $\mathcal F$ du fil; on posera $\mathcal F_m = \mathcal F(T_m,L_m)$; retrouver ainsi qu’à température constante le fil se comporte comme un ressort élastique, dont on déterminera la raideur.
      Pour ce qui suit, on rappelle que dans le diagramme de Clapeyron d’un gaz, le volume est en abscisse et la pression en ordonnée; on conviendra d’appeler ici diagramme de Clapeyron du fil le diagramme où la longueur $L$ est en abscisse et la tension $F$ en ordonnée.
    6. Représenter qualitativement un cycle de Carnot moteur dans le diagramme de Clapeyron en indiquant le sens de circulation sur le cycle. On précisera en outre les relations $F(L)$ associées à des transformations réversibles dans ce cycle.
  2. Moteur d’Archibald.
    Une roue circulaire de rayon $R$ tourne sans frottement avec une vitesse angulaire constante $\omega$ autour d’un axe horizontal perpendiculaire au plan de la figure et passant par son centre $C$. La moitié inférieure de la roue est en équilibre thermique avec un bain d’eau chaude à la température $T_1$, la moitié supérieure est à la température $T_2$ de l’atmosphère ($T_1 > T_2$). D’un point $O$ fixe, situé dans le plan de la roue, sur l’horizontale passant par le centre $C$ et tel que $OC = a$, avec $a$ très petit devant $R$, rayonnent $2N$ fils de caoutchouc analogues à celui qui est décrit dans la première partie et fixés régulièrement à la périphérie de la roue.
    La position d’un fil particularisé $OA$ étant déterminée par l’angle $\theta$ entre $OC$ et $CA$ (figure [fig1]) , les autres fils font avec $OC$ les angles $\displaystyle \theta + \frac{p \pi}{N}$, $\displaystyle \theta + \frac{2 p \pi}{N}$ ($p$ entier variant de $1$ à $2N-1$) et ainsi de suite. En accord avec l’hypothèse des équilibres thermiques de la roue, on admet que cette dernière tourne suffisamment lentement pour que chaque fil franchissant l’horizontale prenne sa nouvelle température instantanément, c’est-à-dire que l’excursion du fil dans l’atmosphère (ou le bain d’eau chaude) se fait à la température constante $T_2$ (ou $T_1$).

    1. Cycle de Stirling.
      1. Donner l’expression de la longueur du fil particularisé $OA$ en fonction de $a$, $R$ et $\theta$, en négligeant le terme du deuxième ordre en $a/R$.
      2. [Q212] Soit $A'$ le point du diagramme de Clapeyron correspondant à la longueur et la température la plus élevée; tracer qualitativement le schéma du cycle moteur $A'$, $B'$, $C'$ et $D'$ décrit par ce fil quand la roue fait un tour (cycle de Stirling).
    2. Rendement.
      1. Donner l’expression de la quantité de chaleur $Q_1$ reçue par le fil $OA$ de la part de la source chaude, en fonction de $T_1$, $T_2$, $\sigma$, $C_L$ et $a$.
      2. Donner de la même manière l’expression de la quantité de chaleur $Q_2$ reçue par ce fil de la part de la source froide et en déduire le travail fourni lors d’un tour de roue.
      3. Retrouver directement l’expression de ce travail à partir de la considération du cycle de la question [Q212].
      4. Donner, en négligeant toujours le terme du deuxième ordre en $a/R$, l’expression du moment $\mathcal M$ par rapport à $C$ de la tension du fil appliquée à la roue. Retrouver ainsi l’expression du travail reçu par un fil pour un tour de roue.
      5. [Q225] Exprimer le rendement $\eta$ du système au cours d’un cycle en fonction de $T_1$, $T_2$, $\sigma$, $a$ et $C_L$.
    3. Performances.
      1. Soit $\eta_C$ l’expression du rendement de Carnot d’un moteur ditherme travaillant entre une source chaude à la température $T_1$ et une source froide à la température $T_2$; exprimant le rendement $\eta$ de la question [Q225] sous la forme $\eta = \alpha \eta_C$, donner l’expression de $\alpha$.
      2. L’ensemble des transformations ($B' \to C'$ et $D' \to A'$) est-il adiabatique? Expliquer qualitativement pourquoi le rendement dans un cycle de Stirling est plus faible que le rendement dans un cycle de Carnot.
    4. Applications numériques.
      On adoptera les valeurs numériques suivantes: $T_1 = 340 {\,\mathrm{K}}$, $T_2 = 300 {\,\mathrm{K}}$, $a = 2 {\,\mathrm{cm}}$, $\sigma = 10^{-2} {\,\mathrm{N}\cdot\mathrm{K}^{-1}}$, $C_L = 3,3 {\,\mathrm{J}\cdot\mathrm{K}^{-1}}$, $2N = 32$ et $\omega = 2\pi {\,\mathrm{rad}\cdot\mathrm{s}^{-1}}$.
      1. Calculer les valeurs numériques respectives du rendement et de la puissance du moteur.
      2. On désire utiliser ce dispositif pour pomper de l’eau dans le désert, la nappe étant à une profondeur de $10{\,\mathrm{m}}$. Quel serait le débit de la pompe ainsi constituée? Recommanderiez-vus l’utilisation d’un tel appareil?

Aucun commentaire:

Enregistrer un commentaire

Autres Concours

2011  : Concours ENAC de  physique 2011  :  énoncé ,  corrigé Concours ICNA de  physique 2011  :  énoncé ,  corrigé Concours ICNA de ...