Recherche sur le blog!

Affichage des articles dont le libellé est P'. Afficher tous les articles
Affichage des articles dont le libellé est P'. Afficher tous les articles

Concours commun Mines-Ponts (M, P', TA) 1990 Physique I (Énoncé)

Mines–Ponts, M, P’, TA, 1990 (Physique I)
Le moteur à fils de caoutchouc
  1. Thermodynamique d’un fil de caoutchouc.
    Les paramètres thermodynamiques d’un fil de caoutchouc sont la longueur $L$, la tension $F$ et la température $T$. Au voisinage d’une température moyenne $T_m$, d’une longueur moyenne $L_m$ et d’une tension moyenne $F_m$, l’équation d’état est linéarisable et prend la forme: \[F(L,T) = F_m + \rho \left(L - L_m\right) + \sigma\left(T - T_m\right)\]$\rho$ et $\sigma$ sont des constantes positives. Le travail élémentaire reçu quand le fil s’allonge de ${\mathrm{d}}L$ lors d’une transformation réversible est noté $\delta W = F {\mathrm{d}}L$. On désigne par $C_L$ la capacité calorifique du fil à longueur constante et on note la chaleur reçue dans une transformation élémentaire par: \[\delta Q = C_L {\mathrm{d}}T + h {\mathrm{d}}L\] $h$ étant a priori une fonction de $T$ et $L$. On suppose enfin que $C_L$ est indépendant de la température.

    1. À l’aide de l’expression différentielle des deux principes de la thermodynamique, exprimer $h$ en fonction de $T$ et de $\sigma$.
    2. Montrer que $C_L$ ne dépend pas de $L$; on dira que $C_L$ est une constante.
    3. Donner l’expression de l’entropie du fil, $S(T,L)$, en fonction de la longueur $L$, de la température $T$ et de $T_m$, $L_m$, $C_L$ et $\sigma$. On posera $S_m = S(T_m,L_m)$.
    4. On tire sur le fil de façon isotherme. Quel est le signe de la variation d’entropie? Déterminer l’expression et indiquer le signe de la variation d’entropie d’une mole de gaz parfait dont le volume augmente de façon isotherme; commenter le résultat obtenu, sachant que le fil de caoutchouc est un polymère constitué de longues chaînes de molécules.
    5. Déterminer l’expression de l’énergie libre $\mathcal F$ du fil; on posera $\mathcal F_m = \mathcal F(T_m,L_m)$; retrouver ainsi qu’à température constante le fil se comporte comme un ressort élastique, dont on déterminera la raideur.
      Pour ce qui suit, on rappelle que dans le diagramme de Clapeyron d’un gaz, le volume est en abscisse et la pression en ordonnée; on conviendra d’appeler ici diagramme de Clapeyron du fil le diagramme où la longueur $L$ est en abscisse et la tension $F$ en ordonnée.
    6. Représenter qualitativement un cycle de Carnot moteur dans le diagramme de Clapeyron en indiquant le sens de circulation sur le cycle. On précisera en outre les relations $F(L)$ associées à des transformations réversibles dans ce cycle.
  2. Moteur d’Archibald.
    Une roue circulaire de rayon $R$ tourne sans frottement avec une vitesse angulaire constante $\omega$ autour d’un axe horizontal perpendiculaire au plan de la figure et passant par son centre $C$. La moitié inférieure de la roue est en équilibre thermique avec un bain d’eau chaude à la température $T_1$, la moitié supérieure est à la température $T_2$ de l’atmosphère ($T_1 > T_2$). D’un point $O$ fixe, situé dans le plan de la roue, sur l’horizontale passant par le centre $C$ et tel que $OC = a$, avec $a$ très petit devant $R$, rayonnent $2N$ fils de caoutchouc analogues à celui qui est décrit dans la première partie et fixés régulièrement à la périphérie de la roue.
    La position d’un fil particularisé $OA$ étant déterminée par l’angle $\theta$ entre $OC$ et $CA$ (figure [fig1]) , les autres fils font avec $OC$ les angles $\displaystyle \theta + \frac{p \pi}{N}$, $\displaystyle \theta + \frac{2 p \pi}{N}$ ($p$ entier variant de $1$ à $2N-1$) et ainsi de suite. En accord avec l’hypothèse des équilibres thermiques de la roue, on admet que cette dernière tourne suffisamment lentement pour que chaque fil franchissant l’horizontale prenne sa nouvelle température instantanément, c’est-à-dire que l’excursion du fil dans l’atmosphère (ou le bain d’eau chaude) se fait à la température constante $T_2$ (ou $T_1$).

    1. Cycle de Stirling.
      1. Donner l’expression de la longueur du fil particularisé $OA$ en fonction de $a$, $R$ et $\theta$, en négligeant le terme du deuxième ordre en $a/R$.
      2. [Q212] Soit $A'$ le point du diagramme de Clapeyron correspondant à la longueur et la température la plus élevée; tracer qualitativement le schéma du cycle moteur $A'$, $B'$, $C'$ et $D'$ décrit par ce fil quand la roue fait un tour (cycle de Stirling).
    2. Rendement.
      1. Donner l’expression de la quantité de chaleur $Q_1$ reçue par le fil $OA$ de la part de la source chaude, en fonction de $T_1$, $T_2$, $\sigma$, $C_L$ et $a$.
      2. Donner de la même manière l’expression de la quantité de chaleur $Q_2$ reçue par ce fil de la part de la source froide et en déduire le travail fourni lors d’un tour de roue.
      3. Retrouver directement l’expression de ce travail à partir de la considération du cycle de la question [Q212].
      4. Donner, en négligeant toujours le terme du deuxième ordre en $a/R$, l’expression du moment $\mathcal M$ par rapport à $C$ de la tension du fil appliquée à la roue. Retrouver ainsi l’expression du travail reçu par un fil pour un tour de roue.
      5. [Q225] Exprimer le rendement $\eta$ du système au cours d’un cycle en fonction de $T_1$, $T_2$, $\sigma$, $a$ et $C_L$.
    3. Performances.
      1. Soit $\eta_C$ l’expression du rendement de Carnot d’un moteur ditherme travaillant entre une source chaude à la température $T_1$ et une source froide à la température $T_2$; exprimant le rendement $\eta$ de la question [Q225] sous la forme $\eta = \alpha \eta_C$, donner l’expression de $\alpha$.
      2. L’ensemble des transformations ($B' \to C'$ et $D' \to A'$) est-il adiabatique? Expliquer qualitativement pourquoi le rendement dans un cycle de Stirling est plus faible que le rendement dans un cycle de Carnot.
    4. Applications numériques.
      On adoptera les valeurs numériques suivantes: $T_1 = 340 {\,\mathrm{K}}$, $T_2 = 300 {\,\mathrm{K}}$, $a = 2 {\,\mathrm{cm}}$, $\sigma = 10^{-2} {\,\mathrm{N}\cdot\mathrm{K}^{-1}}$, $C_L = 3,3 {\,\mathrm{J}\cdot\mathrm{K}^{-1}}$, $2N = 32$ et $\omega = 2\pi {\,\mathrm{rad}\cdot\mathrm{s}^{-1}}$.
      1. Calculer les valeurs numériques respectives du rendement et de la puissance du moteur.
      2. On désire utiliser ce dispositif pour pomper de l’eau dans le désert, la nappe étant à une profondeur de $10{\,\mathrm{m}}$. Quel serait le débit de la pompe ainsi constituée? Recommanderiez-vus l’utilisation d’un tel appareil?

Concours Mines-Ponts 1984 Filière M, P’ (Corrigé)

                                                                 Équilibre d’un clown sur un ballon

I. CINÉTIQUE ET CINÉMATIQUE

I.1.a. L’angle a étant constant, A et donc H (car AH est toujours vertical) ont la même vitesse et la même accélération que C :
${{\bf{v}}_{\bf{H}}} = \dot x{{\bf{e}}_{\bf{x}}} = v{{\bf{e}}_{\bf{x}}}$ et ${{\bf{a}}_{\bf{H}}} = \ddot x{{\bf{e}}_{\bf{x}}} = a{{\bf{e}}_{\bf{x}}}$
I.1.b. G est le centre de masse du système clown-ballon donc :$\left( {M + m} \right){\bf{OG}} = M{\bf{OH}} + m{\bf{OC}}$. On en déduit :
${{\bf{v}}_G} = \dot x{{\bf{e}}_{\bf{x}}} = v{{\bf{e}}_{\bf{x}}}$ et ${{\bf{a}}_G} = \ddot x{{\bf{e}}_{\bf{x}}} = a{{\bf{e}}_{\bf{x}}}$
I.2. Le ballon roule sans glisser sur le sol horizontal donc ${{\bf{v}}_{{\bf{I}} \in ballon}} = \vec 0$ dans (R ). La vitesse de C s’écrit alors : ${{\bf{v}}_{\bf{C}}} = {{\bf{v}}_{{\bf{I}} \in ballon}} + \omega {{\bf{e}}_{\bf{y}}} \wedge {\bf{IC}}$ soit : ${{\bf{v}}_{\bf{c}}} = R\dot \varphi {{\bf{e}}_{\bf{x}}}$
Le non-glissement se traduit donc par : $v = \dot x = R\dot \varphi $


I.3. Le point A appartenant au clown à la même vitesse que C dans (R ). La vitesse du clown par rapport au ballon est l’opposé de la vitesse (dans (R*)) du point A appartenant au ballon. Cette vitesse est tangente au ballon en A et a pour norme $R\left| {\dot \varphi } \right| = \left| v \right|$.
I.4. Le moment d’inertie du ballon par rapport au centre C vaut mR2 car toute la masse est répartie sur la surface du ballon. Compte tenu de la symétrie sphérique du ballon :${J_{Cx}} = {J_{Cy}} = {J_{Cz}}$. On en déduit :
$J = {J_{Cy}} = \frac{2}{3}{J_O} = \frac{2}{3}m{R^2}$
I.5.  
I.5.a. D’après le théorème de Kœnig : ${{\bf{L}}_{{\bf{C}}/(R)}} = {\bf{L}}* = J\dot \varphi {{\bf{e}}_{\bf{y}}} = \frac{2}{3}mRv{{\bf{e}}_{\bf{y}}}$L* est le moment cinétique barycentrique du ballon.
I.5.b. Sachant que ${{\bf{L}}_{I/(R)}} = {{\bf{L}}_{C/(R)}} + {\bf{IC}} \wedge m{{\bf{v}}_C}$, le moment cinétique en I du ballon est : ${{\bf{L}}_{I/(R)}} = \frac{5}{3}mRv{{\bf{e}}_{\bf{y}}}$.
I.6.  
I.6.a. On néglige l’inertie des parties mobiles du clown dans sa marche ou sa course à petits pas de sorte que son mouvement est, dans (R ), un mouvement de translation. Dans le référentiel barycentrique (R* ), le clown est donc considéré comme fixe. Par conséquent : ${\bf{L}}{'_{H/(R)}} = {\bf{L}}'* = \vec 0$. Le moment cinétique du clown par rapport à I vaut donc : ${\bf{L}}{'_{I/(R)}} = {\bf{L}}'* + {\bf{IH}} \wedge M{{\bf{v}}_H} = MR\left( {3 + \cos \alpha } \right)v{{\bf{e}}_{\bf{y}}}$
I.6.b. Pour le système clown-ballon, le moment cinétique total s’écrit alors :
${\bf{L}} = {{\bf{L}}_{I/(R)}} + {\bf{L}}{'_{I/(R)}} = \left( {\frac{5}{3}m + M\left( {3 + \cos \alpha } \right)} \right)Rv{{\bf{e}}_{\bf{y}}}$

II. DYNAMIQUE

II.1. ${\left. {\frac{{d{{\bf{L}}_{P/(R)}}}}{{dt}}} \right)_{(R)}} = {M_P} + M{{\bf{v}}_{G/(R)}} \wedge {{\bf{v}}_{P/(R)}}$ où G est le centre de masse du solide de masse M. Se référer au cours pour la démonstration.
II.2.  
II.2.a. Le point géométrique de contact a une vitesse colinéaire à celle du centre de masse du système clown-ballon. Le théorème du moment cinétique appliqué en ce point pour tout le système s’écrit donc :
${\left. {\frac{{d{{\bf{L}}_{I/(R)}}}}{{dt}}} \right)_{(R)}} = {M_I}$
En projetant sur Oy, on en déduit l’accélération du centre C du ballon (identique à l’accélération de G et de tout point du clown) :
$a = \frac{{Mg\sin \alpha }}{{\frac{5}{3}m + M\left( {3 + \cos \alpha } \right)}}$
On constate que le mouvement de C est uniformément accéléré.
II.2.b. A.N : a = 0,21 m.s-2.
II.3.  


II.3.a. Le théorème de la résultante cinétique appliqué au système complet s’écrit :
$\left( {M + m} \right){\bf{a}} = {\bf{T}} + {\bf{N}} + \left( {M + m} \right){\bf{g}}$
            En projection sur Ox : $T = \left( {M + m} \right)a$ et sur Oy : $N = \left( {M + m} \right)g$ en posant ${\bf{T}} = T{{\bf{e}}_{\bf{x}}}$ et ${\bf{N}} = N{{\bf{e}}_{\bf{z}}}$
II.3.b. Vérifions la condition de non-glissement : $\left| T \right| < f\left| N \right|$.
$\frac{{\left| T \right|}}{{\left| N \right|}} = \frac{{M\left| {\sin \alpha } \right|}}{{\frac{5}{3}m + M\left( {3 + \cos \alpha } \right)}}$=0,02 < f si f = 0,2.
II.4.  
II.4.a. On a montré que la vitesse du clown par rapport au ballon a pour norme v. L’accélération étant constante : v = at. La vitesse limite est atteinte à l’instant t tel que : $\tau  = \frac{{{v_{\lim }}}}{a}$. t = 10 s. La distance parcourue est alors : $d = \frac{1}{2}a{\tau ^2} = \frac{{v_{\lim }^2}}{{2a}}$ : d = 10 m.
Ensuite le clown tombe car il ne peut pas marcher plus vite.
II.4.b. La puissance fournie par le clown sert à accroître l’énergie cinétique du système clown-ballon : ${P_u} = \frac{{d{E_K}}}{{dt}}$ avec ${E_K} = {E_K}\left( {{\rm{clown}}} \right) + {E_K}\left( {{\rm{ballon}}} \right)$
${E_K}\left( {{\rm{clown}}} \right) = \frac{1}{2}M{v^2}$ et ${E_K}\left( {{\rm{ballon}}} \right) = E_K^* + \frac{1}{2}m{v^2}$ d’après le théorème de Kœnig. Le ballon a un mouvement de rotation dans le référentiel barycentrique autour de Cy à la vitesse angulaire $\dot \varphi $. Dans ce référentiel, l’énergie cinétique vaut donc : $E_K^* = \frac{1}{2}J{\dot \varphi ^2}$.
Pour l’ensemble ballon-clown : ${E_K} = \frac{1}{2}\left( {M + \frac{5}{3}m} \right){v^2}$
On en déduit la puissance instantanée fournie par le clown : ${P_u} = \frac{{d{E_K}}}{{dt}} = \left( {M + \frac{5}{3}m} \right){\bf{v}}.{\bf{a}}$ soit :
${P_u} = \frac{{d{E_K}}}{{dt}} = \frac{{M + \frac{5}{3}m}}{{\frac{5}{3}m + M\left( {3 + \cos \alpha } \right)}}Mg\sin \alpha {\rm{  }}v$
La puissance développée par le clown est donc maximale à l’instant où sa vitesse par rapport au ballon est maximale (2 m/s) :
${P_{uMAX}} = \frac{{d{E_K}}}{{dt}} = \frac{{M + \frac{5}{3}m}}{{\frac{5}{3}m + M\left( {3 + \cos \alpha } \right)}}Mg\sin \alpha {\rm{  }}{v_{MAX}}$
A.N : PuMAX = 29 W

III. STATIQUE ET DYNAMIQUE SUR PLAN INCLINE

III.1.  
III.1.a. A l’équilibre du système clown-ballon, le torseur des actions extérieures est nul :
                                                                ${\bf{T}} + {\bf{N}} + \left( {M + m} \right){\bf{g}} = \vec 0$          (1)
                                                                $M({\bf{T}}) + M({\bf{N}}) + M(M{\bf{g}}) + M(m{\bf{g}}) = \vec 0$ (2)
M(F) représente le moment de la force F.
Remarquons que le point par rapport auquel on calcule le moment des actions extérieures n’a pas d’importance car la résultante des actions extérieures est nulle.
En appliquant (2) au point I, on obtient : ${\bf{IC}} \wedge m{\bf{g}} + {\bf{IH}} \wedge M{\bf{g}} = \vec 0$ qui devient après simplifications :

$\sin (\alpha  + \beta ) =  - \frac{{m + M}}{M}\sin \beta $
Avec $0 < \beta  < 90^\circ $, on trouve que $\alpha  + \beta  < 0$ c’est-à-dire $\alpha  <  - \beta  < 0$(cf. figure ci-dessous).

III.1.b. La relation (1) projeté sur les axes Ox et Oz donnent respectivement :
$T =  - \left( {m + M} \right)g\sin \beta $
$N = \left( {m + M} \right)g\cos \beta $
Le glissement ne s’amorce pas si $\frac{{\left| T \right|}}{{\left| N \right|}} < f$ soit : $\tan \beta  < f$. Avec f = 0,2, on trouve b < 11°
III.1.c. Pour que le système soit à l’équilibre pour b = 5°, il faut a = -10,5°


III.2.  
III.2.a. Le raisonnement des questions I.5 et I.6 reste valable ici. Le seul changement provient de l’expression de IH  qui s’écrit maintenant : ${\bf{IH}} = R\left( {\left( {\sin \alpha  - 2\sin \beta } \right){{\bf{e}}_{\bf{x}}} + \left( {1 + \cos \alpha  + 2\cos \beta } \right){{\bf{e}}_z}} \right)$.
Le moment cinétique par rapport à I du ballon est inchangé et celui du clown devient :
${\bf{L}}{'_{I/(R')}}({\rm{clown}}) = {\bf{L}}'* + {\bf{IH}} \wedge M{{\bf{v}}_H} = MR\left( {1 + \cos \alpha  + 2\cos \beta } \right)v{{\bf{e}}_{\bf{y}}}$
Le moment cinétique total en I s’écrit donc :
${{\bf{L}}_{I/(R')}} = \left( {\frac{5}{3}m + M\left( {1 + \cos \alpha  + 2\cos \beta } \right)} \right)Rv{{\bf{e}}_{\bf{y}}}$
Avec b = 0, on retrouve bien sûr le résultat de la question I.6.b
III.2.b. En appliquant le théorème du moment cinétique en I (point géométrique de contact) comme en II.2 :
${\left. {\frac{{d{{\bf{L}}_{I/(R')}}}}{{dt}}} \right)_{(R')}} = {M_I} = {M_I}(m{\bf{g}}) + {M_I}(M{\bf{g}})$
On trouve que le mouvement du système est uniformément accéléré :
${\bf{a}} = g\frac{{m\sin \beta  + M\left( {\sin \beta  + \sin \left( {\alpha  + \beta } \right)} \right)}}{{\frac{5}{3}m + M\left( {1 + \cos \alpha  + 2\cos \beta } \right)}}{{\bf{e}}_{\bf{x}}} = {\bf{cste}}$
On retrouve, pour b = 0, le résultat de II.2.a et a = 0 pour $\sin (\alpha  + \beta ) =  - \frac{{m + M}}{M}\sin \beta $ (équilibre).
III.2.c. A.N : accélération : a = 0,64 m.s-2
La vitesse du clown par rapport au ballon est toujours égale à v. La distance parcourue quand le clown atteint la vitesse limite par rapport au ballon de 2 m /s est donc toujours :
$d = \frac{{v_{\lim }^2}}{{2a}}$3,1 m
L’accélération du système est plus importante que sur le plan horizontal (et par conséquent la distance parcourue par le clown avant de tomber plus courte) ce qui est normal car le ballon est entraîné vers le bas de la pente par les forces de pesanteur.
III.3.  
III.3.a. Pour que le ballon remonte la pente, l’accélération algébrique doit être négative ce qui donne :
$\sin (\alpha  + \beta ) <  - \frac{{m + M}}{M}\sin \beta $ c’est-à-dire $\alpha  < {\alpha _{{\rm{\'e quilibre}}}}$
            a = -15° convient car aéq = -10,5°. Dans ce cas : a = –0,18 m.s-2
III.3.b. Le théorème de la résultante cinétique appliqué au système complet s’écrit en projection sur les axes Ox et Oz :
$\left( {m + M} \right)a = T + \left( {M + m} \right)g\sin \beta $ et $N = \left( {M + m} \right)g\cos \beta $
            On en déduit T et : $T = \left( {a - g\sin \beta } \right)\left( {M + m} \right)$ et $N = \left( {M + m} \right)g\cos \beta $
            T < 0 car le mouvement est ascendant (a < 0)
            $\frac{{\left| T \right|}}{{\left| N \right|}} = \tan \beta  - \frac{a}{{g\cos \beta }}$0,11 f si f = 0,2. Il n’y a donc pas glissement.


III.3.c. La longueur parcourue avant que le clown tombe est plus importante que dans les cas précédents car l’accélération est plus faible :
$d = \frac{{v_{\lim }^2}}{{2a}}$11 m  La hauteur dont est monté le système est $h = d\sin \beta $1 m
III.3.d. La puissance utile développée par le clown sert ici à augmenter l’énergie cinétique du système clown-ballon mais aussi à accroître l’énergie potentielle du système :
${P_u} = \frac{{d{E_K}}}{{dt}} + \frac{{d{E_p}}}{{dt}} = \left( {M + \frac{5}{3}m} \right){\bf{v}}.{\bf{a}} - \left( {M + m} \right)g\sin \beta v$ car ${E_p} =  - \left( {M + m} \right)gx\sin \beta  + {\rm{constante}}$
On en déduit la puissance instantanée : ${P_u} = \left( {\left( {M + \frac{5}{3}m} \right)a - \left( {M + m} \right)g\sin \beta } \right)at$
La puissance maximale développée par le clown se situe juste avant qu’il tombe :
${P_{uMAX}} = \left( {\left( {M + \frac{5}{3}m} \right)a - \left( {M + m} \right)g\sin \beta } \right){v_{\lim }}$            A.N : PuMAX = 136 W

C’est la puissance développée pour accroître l’énergie potentielle qui est prépondérante (120 W) ce qui explique l’écart important entre la puissance développée par le clown sur le plan incliné et celle développée sur le plan horizontal.

Concours Mines-Ponts 1984 Filière M, P’ (Énoncé)

                                                                 Équilibre d’un clown sur un ballon
Dans tout le problème, les vecteurs sont notés en caractères gras.
Un ballon sphérique de rayon R, rigide, de masse m uniformément répartie en surface, roule sans glisser sur le sol horizontal de sorte que son centre reste dans le plan xOz d’un référentiel (R ) =(O, x, y, z) supposé galiléen, dont Oz désigne la verticale ascendante. L’intensité de la pesanteur est ; les vecteurs unitaires portés par les axes Ox, Oy, Oz sont respectivement désignés par ex, ey, ez et forment un trièdre (cf. figure 1). Le coefficient de frottement de glissement sur le sol Ox est constant et égal à f.
A l’instant initial = 0, le centre C du ballon immobile, a pour coordonnées x = y = 0, z = R. Un clown a ses pieds en un point A du ballon situé dans le plan xOz et tel que la droite CA fasse un angle a avec la verticale (cf. figure 1). Le clown marche ou court à petits pas sur le ballon en direction de son point le plus haut : à tout instant la droite instantanée CA fait l’angle a avec la verticale. Le clown est assimilé à un solide de masse M de centre de masse H : AH est constamment vertical ; AH = h =2R. On néglige l’inertie des parties mobiles du clown dans sa marche ou sa course à petits pas de sorte que son mouvement est, dans (R ), un mouvement de translation.


On désigne par v et a la vitesse et l’accélération de C dans (). La rotation du ballon dans () est comptée positivement suivant Oy f est l’angle de rotation et on pose $\dot \varphi  = \frac{{d\varphi }}{{dt}}$ (cf. figure 1).



I. CINEMATIQUE ET CINETIQUE

I.1.  



I.1.a. Quelles sont la vitesse vH et l’accélération aH de H dans (R ) ?
I.1.b. En déduire la vitesse vG et l’accélération aG du centre de masse G du système clown-ballon dans son mouvement par rapport à (R ) ?
I.2. Quelle est la relation traduisant le roulement sans glissement du ballon au point de contact I avec le sol ?
I.3. Quelle est la vitesse du clown par rapport à la surface du ballon, avec laquelle il est en contact ?
I.4. Montrer que le moment d’inertie J du ballon autour de l’axe Cy parallèle à Oy est $\frac{2}{3}m{R^2}$.

I.5.  

I.5.a. Quel est, dans (R ), le moment cinétique LC du ballon en son centre C ?
On exprimera LC en fonction de m, R et v = v.ex.
I.5.b. En déduire le moment cinétique LI du ballon, dans (R ), au point de contact I.

I.6.  

I.6.a. Quel est, dans (R ), le moment cinétique L’H du clown en H ?
En déduire le moment cinétique L’I, dans (R ), du clown en I.
I.6.b. Exprimer en fonction de R, v, m, M et a le moment cinétique total L du système clown-ballon en I, dans le référentiel (R ).

II. DYNAMIQUE




II.1. On considère le moment cinétique LP, d’un solide quelconque (S), de centre de masse G, calculé dans un référentiel (R ), en un point P quelconque de (S). Etablir le théorème du moment cinétique en P.

II.2.  

II.2.a. En appliquant le théorème du moment cinétique au point géométrique de contact I, montrer que l’accélération du point C est :
$a = \frac{{Mg\sin \alpha }}{{\frac{5}{3}m + M(3 + \cos \alpha )}}$
II.2.b. Application numérique : calculer a pour M = 60 kg ; m = 6,0 kg ; R = 0,50 m ; a = 5,0° ; g = 9,8 m.s-2

II.3.  

II.3.a. Calculer les composantes tangentielle T et normale N de la réaction du sol sur le ballon.
II.3.b. Montrer que si f = 0,2 il ne peut y avoir glissement ni au départ, ni en un instant ultérieur.
II.4. Le clown ne peut courir à petits pas à plus de 2,0 m/s par rapport à la surface du ballon.
II.4.a. Au bout de combien de temps t, cette vitesse est-elle atteinte ? Quelle est la distance L parcourue par le ballon ? Que se passe-t-il ensuite ? (On demande pour t et L les expressions littérales et les valeurs numériques).
II.4.b. Quel est le maximum de la puissance utile Pu fournie par le clown, c’est-à-dire la puissance fournie pour accroître dans (R ) l’énergie cinétique du système clown-ballon ? On donnera l’expression littérale de Pu au cours du temps, puis sa valeur maximale, littérale et numérique.

III. STATIQUE ET DYNAMIQUE SUR UN PLAN INCLINÉ




Le ballon est désormais sur une planche inclinée, dont la ligne de plus grande pente, choisie comme axe Ox du référentiel (R’ ) galiléen, fait l’angle b avec le sol. L’axe Oz est orthogonal à Ox et dirigé vers le haut (figure 2).
Le clown est toujours vertical, c’est-à-dire que AH est orthogonal au sol. L’angle de CA avec IC est noté a, comme dans les parties I et II (figure 2).


III.1.
On suppose que le clown est en équilibre sur le ballon et on admet que le coefficient de frottement du clown sur le ballon en A est suffisant pour que le glissement soit absent en A.
III.1.a. Quelle est la valeur de a qui, pour b donné, permet dans (R’ ) l’équilibre du système clown-ballon.
III.1.b. Quelle est la condition sur b pour que le glissement en I ne s’amorce pas ? On prendra f = 0,2.
III.1.c. Calculer numériquement a à l’équilibre pour b = 5,0°.
III.2. Le système clown-ballon descend le plan incliné suivant la ligne de plus grande pente Ox : $v \ge 0$. Le clown marche ou court pour maintenir a constant. Initialement, le ballon et le clown sont immobiles.
III.2.a. Exprimer dans (R’ ) le moment cinétique total en I en fonction de m, M, R, v, a et b.
Vérifier ce résultat dans un cas particulier.
III.2.b. Montrer que le mouvement de C est uniformément varié. On donnera l’expression de ${\bf{a}}(m,M,g,\alpha ,\beta )$. Vérifier cette expression dans un cas particulier et retrouver le résultat de la question III.1.
III.2.c. On prend a = b = 5°. Calculer a puis la distance parcourue quand le clown atteint la vitesse limite, par rapport au ballon, de 2 m/s. Comparer au résultat de II.4 et commenter.
III.3. Le clown veut avoir un mouvement ascendant, c’est-à-dire remonter la pente Ox.
III.3.a. Montrer que a doit satisfaire à une inégalité dépendant de b. Si b = 5,0°, la valeur a = -15° est-elle satisfaisante ? Calculer a dans ce cas.
III.3.b. Calculer les composantes tangentielle et normale de la réaction de la planche sur le ballon et vérifier que le glissement ne peut s’amorcer si f = 0,2.
III.3.c. Quelle longueur le ballon peut-il parcourir avant que le clown perde l’équilibre ? A quelle hauteur cela correspond-il ?
III.3.d. Comment devrait-on définir ici la puissance utile développée par le clown ? Calculer sa valeur maximale compatible avec l’équilibre du clown sur le ballon. Comparer au résultat de la question II.4.b et commenter.



Fin du problème

Concours Physique EIVP P' 1994 (Énoncé)

EIVP 1994 - OPTION P’
PB 1 : FREINAGE D'UNE NAVETTE SPATIALE DANS L'ATMOSPHERE
Dans tout le problème, O désigne le centre de la terre et RT son rayon . Pour un point M quelconque, on note OM = r ur et r = OM = RT + h ce qui définit l'altitude h . Les mouvements sont étudiés dans le référentiel géocentrique supposé galiléen .
*** Dans tout le problème, on néglige l'action gravitationnelle de la terre sur la navette ***

1. Préliminaire
L'atmosphère est assimilée à un gaz parfait de masse molaire M = 29 g.mol-1 à température uniforme T, en équilibre dans le champ de gravitation G(M) supposé radial et de norme uniforme : G(M) = - G ur , avec G = 10 m.s-2.
- montrer que la masse volumique à l'altitude h est de la forme µ(h) = µSexp(- h/d) où µS désigne la valeur de µ au sol c'est-à-dire à l'altitude h = 0 ; exprimer la constante d en fonction de M, G, T et de la constante des gaz parfaits R = 8,32 J.K-1.mol-1 ;
- dans la suite on prend d = 8.103 m et µS = 1,3 kg.m-3 ; calculer la température T .
2. Freinage vertical
Une navette spatiale, assimilée à une masse ponctuelle m = 5.103 kg, est abandonnée à la date t = 0 à l'altitude h0 = 105 m avec une vitesse V0 = 8.103 m.s-1 . Elle décrit la verticale descendante issue de son point de départ dont le vecteur unitaire ascendant est noté ur , avec un vecteur-vitesse V = - V ur .
L'atmosphère exerce sur la navette une force de frottements F = µ C1V2 ur qui dépend de l'altitude via la masse volumique de l'air µ = µSexp(-h/d) avec les valeurs numériques de la question 1 ; C1 est un coefficient numérique positif lié à la forme de la navette ; pour les applications numériques, on prendra C1 = 10 m2 .
2.1 Ecrire le principe fondamental de la dynamique et montrer en éliminant l'altitude h et le temps t que V et µ satisfont à l'équation différentielle : $\frac{{dV}}{{d\mu }}$ + (C1d/m) V = 0
2.2 En déduire l'expression de V/V0 en fonction de µ, C1d/m et de µ0 = µSexp(-h0/d) .
2.3 Les relations V/V0 = f(µ) et h = d ln(µS/µ) constituent l'équation de la courbe V(h) paramétrée par µ dont l'allure du graphe est donnée ci-dessous (V en m.s-1 et h en km) .
Comment évolue l'efficacité du freinage en fonction de l'altitude h ? Interpréter qualitativement cette évolution . Puis calculer la vitesse V de la navette au sol .
2.4 On note δ = - dV/dt la décélération de la navette . Exprimer δ en fonction de la seule variable µ et des constantes du problème . Montrer que δ passe par un maximum δM ; calculer δM/G et commenter sachant que la navette transporte des passagers .
2.5 Calculer δ/G pour h = h0 et h = 0 . Discuter qualitativement suivant l'altitude h la validité de l'hypothèse consistant à négliger la force gravitationnelle .

3. Freinage sur une spirale
La navette décrit dans cette partie une courbe plane telle que en tout point sa tangente t fait un angle α constant avec la verticale descendante - ur .
Soit V = V t le vecteur-vitesse de la navette ; la projection de l'action F de l'atmosphère sur la navette sur la tangente t vaut Ft = - C1µV2 où C1 a été défini plus haut .
3.1 Relier V, dh/dt et α . En déduire que V(µ) est solution d'une équation différentielle analogue à celle de 2.1 et faisant intervenir les constantes C1, d, m et α .
3.2 On conserve les conditions initiales V0 = 8.103 m.s-1 à l'altitude h0 = 105 m . Tracer sur une même figure l'allure du graphe de V(h) pour α = 0 et α non nul ; comparer qualitativement l'efficacité du freinage pour α = 0 et α non nul .
3.3 Calculer le nouveau maximum δM de la décélération tangencielle δ = - dV/dt ; comment faut-il choisir α pour que δM/G soit inférieur à 10 ? Calculer la longueur L parcourue par la navette entre l'altitude h = h0 et l'altitude h = 0 pour la valeur limite de α ; commenter en liaison avec 3.2 .
3.4 En pratique, on recouvre la navette d'une céramique protectrice qui se vaporise sous l'action de l'atmosphère . Proposer une estimation grossière de l'épaisseur de céramique nécessaire . Données : chaleur latente de fusion de la céramique lF = 103 kJ.kg-1 ; chaleur latente de vaporisation de la céramique lv = 9.103 kJ.kg-1 ; masse volumique de la céramique µc = 8.103 kg.m-3 ; surface à protéger S = 10 m2 .
PB 2 : INTERACTION ENTRE DEUX SPIRES
Dans tout le problème, on étudie deux spires identiques de masse m, de rayon a, libres de se translater sans frottements le long de leur axe commun Oz, supposé horizontal .
On repère leur mouvement par les abscisses z1 et z2 de leurs centres respectifs C1 et C2 . On suppose qu'à tout instant on a z2 - z1 positif et très supérieur au rayon a . On oriente ces deux spires dans le sens trigonométrique autour de l'axe z'z .

La spire (1), de résistance et d'inductance propre nulles, est reliée à un générateur de courant parfait qui y maintient un courant I1 stationnaire . La spire (2), de résistance R et d'inductance propre nulle est fermée sur elle-même . On pose pour simplifier certains calculs z = z2 - z1 . A la date t = 0, partant de z = z0 , on lance les spires (1) et (2) avec des vitesses opposées respectives - V0/2 et + V0/2 .
1. Etude des phénomènes électromagnétiques
1.1 Partant de la loi de Biot et Savart, établir soigneusement l'expression du champ magnétique B1(C2) créé par la spire (1) au centre C2 de la spire (2) . Dans toute la suite on adopte l'expression approchée : B1(C2) =$\frac{{{\mu _0}{I_1}{a^2}}}{{2{z^3}}}{u_z}$.
1.2 En déduire l'expression de l'inductance mutuelle M entre les deux spires en confondant le champ B1 en tout point de la surface de la spire avec sa valeur en C2 ; en déduire l'expression du courant I2 dans la spire (2) en fonction de z, dz/dt et des données .
1.3 L'origine étant prise en O1 sur l'axe Oz, on repère un point M quelconque par ses coordonnées cylindriques (r, θ, z) et on utilise le trièdre local (ur, uθ, uz) associé .
1.3.a Montrer par des considérations de symétrie soignées que le champ B créé par la spire (1) au point M est de la forme B = Br(r,z) ur + Bz(r,z) uz .
1.3.b On suppose M proche de l'axe et on confond Bz(r,z) et sa valeur Bz(r = 0, z) prise sur l'axe Oz et qui a été déterminée en 1.1 . En exprimant le flux de B à travers un cylindre d'axe Oz, de rayon r, compris entre les cotes z et z + dz, établir l'expression de Br(r,z) en fonction de r et de $\frac{{d{B_z}}}{{dz}}$, puis en fonction de µ0, I1, a, r et z .
1.3.c En déduire que la résultante F1-2 des forces de Laplace exercée par la spire (1) sur la spire (2) est de la forme ${F_{1 - 2}} = - \frac{{km}}{2}\frac{{dz}}{{dt}}\frac{1}{{{z^8}}}{u_z}$ et exprimer la constante positive k en fonction de m, µ0, I1 et a . Que vaut alors la force F2-1 exercée par la spire (2) sur la spire (1) ?

2. Etude des mouvements des spires
2.1 Quel est le mouvement du centre d'inertie des deux spires ? Etablir l'équation différentielle du deuxième ordre dont z(t) est solution . En déduire une intégrale première de la forme dz/dt = g(z) où g est une fonction de z faisant apparaître k, z0 et V0 .
2.2.a Quel est le signe de d2z/dt2 à la date t = 0 ? On suppose g(z = + ∞) > 0 . Tracer le graphe de g et discuter graphiquement l'évolution de z(t) et dz/dt . Décrire notamment le régime permanent atteint à la date t = + ∞ .
2.2.b On suppose g(z = + ∞) < 0 . Discuter de même à l'aide du graphe de g l'évolution de z(t) et dz/dt . Décrire notamment le régime permanent atteint à la date t = + ∞ et comparer avec la situation de la question 2.2.a .
2.2.c Dans un diagramme des phases où on porte dz/dt en ordonnée et z en abscisse, mettre en évidence une courbe séparatrice (S) telle qu'on ait le comportement de 2.2.a ou de 2.2.b suivant que le point M0(z0,V0) correspondant aux conditions initiales est situé au-dessus ou en dessous de (S) .
2.3 On se place dans le cas où $k = \frac{{7z_0^7{V_0}}}{2}$. Calculer entre les dates t = 0+ et t = + ∞, en fonction uniquement de m et V0 , le travail WL des forces de Laplace, l'énergie WJ dissipée par effet Joule et la variation d'énergie magnétique . Commenter .

Concours Physique Concours Commun P’ Physique II 1994 (Énoncé)

A 94 PHYS. II - P'
ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES,
ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE,
DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS,
DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY,
DES TÉLÉCOMMUNICATIONS DE BRETAGNE,
ÉCOLE POLYTECHNIQUE
(OPTION T. A.)
CONCOURS D'ADMISSION 1994
PHYSIQUE
DEUXIÈME ÉPREUVE
OPTION P'
(Durée de l'épreuve : 3 heures)
Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :
PHYSIQUE II - P’.
L'énoncé de cette épreuve, particulière aux candidats de l'option P’, comporte 7 pages.
Tout résultat fourni dans l'énoncé peut être utilisé pour les questions ul­térieures, même s'il n'a pas été démontré. Il est loisible aux candidats d’utiliser la notation vectorielle avec flèches : $\vec V$ pour ${\bf{V}}$.
Première partie: Polarisabilité d'un diélectrique en régime sinusoïdal
Le modèle classique le plus simple de diélectrique est celui de "la charge élastiquement liée" ; on y considère le diélec­trique comme formé d'une collection de porteurs de charges (ou, succinctement, charges), identiques entre eux, de masse $m$ et liés à leurs posi­tions d'équilibre respectives par la force harmonique ${\bf{F}} = - k\,{\bf{OM}} = - m\omega _0^2\,{\bf{OM}}$ où ${\bf{r}} = {\bf{OM}}$ est le vecteur écart par rapport à la posi­tion d'équilibre O. Le terme de "frottement fluide" ${\bf{f}} = - m\eta {\bf{V}} = - m\eta \frac{{d\left( {{\bf{OM}}} \right)}}{{dt}}$ traduira grossièrement ici les diverses sources de perte. On suppose qu'une charge liée, de charge $q$ est soumise au champ électrique sinu­soïdal représenté en notation complexe par ${\bf{E}} = {E_0}\left( {\exp j\omega t} \right){{\bf{\hat u}}_{\bf{x}}}$, où ${{\bf{\hat u}}_{\bf{x}}}$ est le vecteur unitaire de la direction x. En ré­gime permanent forcé, l’expression du déplacement de cette charge est ${\bf{r}} = r\left( {\exp j\omega t} \right){{\bf{\hat u}}_{\bf{x}}}$, où $r = r\left( \omega \right)$ est un nombre complexe.
1) Déduire de l’équation différentielle du mouvement l’équation algébrique satisfaite par $r\left( \omega \right)$. Résoudre cette équation en donnant l’expression de $r\left( \omega \right)$.

2) Le moment dipolaire microscopique ${\bf{p}}$ lié à la charge $q$ étant ${\bf{p}} = q{\bf{OM}}$, montrer que ${\bf{p}}$ s'écrit (en notation complexe) : ${\bf{p}} = {\varepsilon _0}\alpha {\bf{E}}$, où $\alpha \left( \omega \right)$est la polarisabilité complexe. Donner l'expres­sion de $\alpha \left( \omega \right)$ en fonction des données et de la pulsation $\omega $ du champ.
3) Rappeler le lien qualitatif entre champ local et champ macroscopique dans un diélectrique.
Le milieu considéré est électriquement neutre et de moment dipolaire permanent nul. On suppose en outre que toutes les autres charges sont immobiles, c’est-à-dire que seules les charges élastiquement liées contribuent à la polarisation du milieu.
4) On note ${N_0}$ le nombre de charges liées par unité de volume et $\bf{P} = \sum\limits_{{\text{charges  liées }} i} {q\bf{r}_i} = {\varepsilon _0}\chi \bf{E}$ le vec­teur polari­sa­tion (macroscopique) du milieu, ce qui définit la susceptibilité complexe $\chi $. Montrer que $\chi = {N_0}\alpha $ et en déduire l’expression de la permittivité diélec­trique relative ${\varepsilon _r} = {\varepsilon _r}\left( \omega \right)$ :
$\left( A \right)\quad \quad {\varepsilon _r}\left( \omega \right) = 1 + \frac{{{N_0}{q^2}}}{{m{\varepsilon _0}}}\frac{1}{{\omega _0^2 - {\omega ^2} + j\eta \omega }}$.
5) Considérations numériques : on veut comparer la polarisation induite dans un matériau par un champ électrique (expérimentalement accessible !) à la polarisation permanente dans un matériau po­laire. Laquelle de ces deux polarisations est la plus élevée ? Voici quelques indications : La polarisa­bi­lité du carbone à très basse fréquence est ${\alpha _c} = {1,7.10^{ - 40}}$SI. Préciser cette unité. Celle de l’hydro­gène est ${\alpha _H} = {0,7.10^{ - 40}}$SI. Commenter le fait que la polarisabilité de CH4 soit ${\alpha _{C{H_4}}} = {2,9.10^{ - 40}}$SI. Le moment dipolaire des molécules d’un matériau spontanément polarisé a pour valeur typique $p = {6.10^{ - 30}}\;C.m$. Est-il légitime de supposer que, dans des conditions standard de température, tous les moments dipolaires pointent dans la même direction (à la température ambiante, l’énergie ther­mique ${k_B}T$ vaut environ $4 \times {10^{ - 21}}J$) ?

Deuxième partie : rayonnement d'une plaque mince diélectrique
On considère (fig.1) une plaque diélectrique, infinie, homogène, occupant le plan Oxy et d'épaisseur $\Delta z$ très faible devant la longueur d'onde $\lambda $dans le vide du rayonnement en présence. Cette plaque étant placée dans le vide de matière, des sources éloignées envoient sur elle une onde électroma­gnétique plane pro­gressive sinusoïdale, de vecteur d'onde ${\bf{k}} = k{{\bf{\hat u}}_{\bf{z}}} = \frac{\omega }{c}{{\bf{\hat u}}_{\bf{z}}} = \frac{{2\pi }}{\lambda }{{\bf{\hat u}}_{\bf{z}}}$, ($c$ est la célé­rité de la lumière) et de vecteur champ électrique ${{\bf{E}}_{0i}} = {E_{0i}}{{\bf{\hat u}}_{\bf{x}}}\exp j\left( {\omega t - kz} \right)$. La polarisabilité com­plexe et la susceptibilité de la plaque sont celles du milieu étudié dans la pre­mière partie. Sous l'effet du champ électrique ${\bf{E}_{0i}}$ de l'onde incidente, le milieu va donc ac­quérir une polarisa­tion macro­sco­pique ${\bf{P}}\left( t \right)$
sinusoïdale, résultant des dipôles microscopiques $\bf{p} = {\bf{p}_\bf{0}}\exp \left( {j\omega t} \right)$ . Les di­pôles oscil­lants ainsi créés vont à leur tour rayonner eux-mêmes un champ. On veut dé­terminer ce champ.
6) On s'intéresse dans un premier temps au champ rayonné dans la région $z > 0$. Montrer, en utilisant des considérations de symétrie, que le champ rayonné “à droite” s'écrit : ${\bf{E}} = {E_x}{{\bf{\hat u}}_{\bf{x}}}$.
On rappelle que le champ électrique rayonné par un dipôle $\bf{p} = {\bf{p}_\bf{0}}\exp \left( {j\omega t} \right)$à une distance $r$ et dansune direction $\theta $ (fig. 2) s'écrit, dans la zone de rayonne­ment $\left( {r > > \lambda } \right)$ :
$\left( B \right)\quad \quad {\bf{E}}\left( {\bf{M}} \right) = \frac{{{\mu _0}}}{{4\pi }}\left( { - {\omega ^2}} \right){p_0}\frac{{\exp j\left( {\omega t - kr} \right)}}{r}\left( {\sin \theta } \right){{\bf{\hat u}}_\theta }$.
fig. 1 : Plaque mince diélectrique dans le plan Oxy. fig. 2 : Notations pour le champ dipolaire.
Pour éviter dans ce qui suit des problèmes de convergence ou de discontinuités, on suppose que la densité particulaire $N$, égale ici à la densité dipolaire, n'est pas strictement uniforme : elle est constante, égale à ${N_0}$, pour tous les points Q dans une très grande région autour d’un point O du plan choisi pour origine, puis elle tend vers zéro très lentement à l'in­fini, avec une symétrie circulaire, de fa­çon à assurer la convergence de toutes les in­tégrales rencon­trées (fig. 3).
Fig. 3 : Allure possible de la fonction $N$(ρ). fig. 4 : Notations pour le champ rayonné “à droite” par L’axe des ρ est discontinu. un dipôle du milieu, situé au point Q.
7) En utilisant les variables $s = QM$ et $\varphi = \left( {{{{\bf{\hat u}}}_{\bf{x}}},{\bf{OQ}}} \right)$ de la figure 4 et en notant ${\left[ {{{{\bf{\hat u}}}_\theta }} \right]_x}$ la pro­jec­tion sur Ox du vecteur ${{\bf{\hat u}}_\theta }$, montrer que le champ ${\bf{E}}$ en un point $M$ de l’axe Oz s'écrit :
$\left( C \right)\quad \quad {\bf{E}}\left( M \right) = \frac{{{\mu _0}}}{{4\pi }}\left( { - {\omega ^2}} \right){p_0}\left( {\Delta z} \right)\left( {\exp j\omega t} \right)\int\limits_0^{2\pi } {d\varphi } \int\limits_z^\infty {N\left( s \right)\left( {\sin \theta } \right){{\left[ {{{{\bf{\hat u}}}_\theta }} \right]}_x}\left( {\exp - jks} \right)ds} .$

8) On admet que la grandeur $N\left( s \right)\left( {\sin \theta } \right){\left[ {{{{\bf{\hat u}}}_\theta }} \right]_x}$de la relation$\left( C \right)$ varie très lente­ment sur une longueur d'onde et plus précisément que $\left| {\frac{d}{{ds}}\left\{ {N\left( s \right)\left( {\sin \theta } \right){{\left[ {{{{\bf{\hat u}}}_\theta }} \right]}_x}} \right\}} \right| < < \left| {\frac{{N\left( s \right)\left( {\sin \theta } \right){{\left[ {{{{\bf{\hat u}}}_\theta }} \right]}_x}}}{\lambda }} \right|$.
En utilisant une intégration par parties, montrer alors que le champ élec­trique rayonné en $z > 0$ s'écrit :
$\left( D \right)\quad \quad {E_x} = - \frac{1}{2}\left( {j\omega } \right)\left( {{\mu _0}c} \right)\left( {{N_0}{p_0}\Delta z} \right)\exp j\left( {\omega t - kz} \right)$.
9) Déduire de la relation $\left( D \right)$ l'expression du champ électrique rayonné pour $z < 0$.
10) Exprimer alors ${{\bf{p}}_0}$ en fonction de ${{\bf{E}}_{{\bf{0i}}}} = {E_{0i}}{{\bf{\hat u}}_{\bf{x}}}$ et de $\alpha \left( {j\omega } \right)$. En déduire que le champ élec­trique rayonné s'écrit :
$\begin{array}{l}\left( E \right)\quad \quad \left\{ \begin{array}{l}z > 0\,:\quad {E_x} = - \frac{1}{2}\left( {jk} \right)\left( {{N_0}\alpha \Delta z} \right){E_{0i}}\exp j\left( {\omega t - kz} \right),\\z < 0\,:\quad {E_x} = - \frac{1}{2}\left( {jk} \right)\left( {{N_0}\alpha \Delta z} \right){E_{0i}}\exp j\left( {\omega t + kz} \right).\end{array} \right.\\\end{array}$
11) Quelle est la nature de l'onde électromagnétique ainsi rayonnée ?
Troisième partie: propagation dans un diélectrique
On considère maintenant une onde électromagnétique sinusoïdale plane progressive de direction Oz qui arrive sur une plaque diélectrique infinie occupant le demi-espace $z > 0$. Le champ électrique de l'onde inci­dente s'écrivant encore ${{\bf{E}}_{0i}} = {E_{0i}}{{\bf{\hat u}}_{\bf{x}}}\exp j\left( {\omega t - kz} \right)$, on cherche à exprimer le champ à l'intérieur du milieu sous la forme ${\bf{E}} = {E_x}\left( z \right)\left( {\exp j\omega t} \right){{\bf{\hat u}}_{\bf{x}}}$. On rappelle les équations locales du champ électro­ma­gnétique appliquées à une onde plane de vecteur d’onde ${\bf{K}}$ :
${\bf{rotE}} = - j{\bf{K}} \wedge {\bf{E}} = - \frac{{\partial {\bf{B}}}}{{\partial t}} = - j\omega {\bf{B}}$ et ${\bf{rotB}} = - j{\bf{K}} \wedge {\bf{B}} = {\mu _0}\frac{{\partial {\bf{D}}}}{{\partial t}} = j\omega {\bf{D}} = j\omega {\varepsilon _0}{\mu _0}\left[ {1 + \chi \left( \omega \right)} \right]{\bf{E}}$,
d’où l’on déduit immédiatement la “relation de dispersion” : ${K^2} = \left( {1 + \chi } \right)\frac{{{\omega ^2}}}{{{c^2}}} = \left( {1 + \chi } \right){k^2}$. Nous mon­trons dans cette partie comment le modèle microscopique introduit dans les parties précédentes per­met de retrouver et d’interpréter ce résultat classique. On supposera dans ce qui suit que les relations établies précé­demment pour la zone de rayonnement $\left( {r > > \lambda } \right)$ sont en fait applicables partout. Il se trouve que cette manière de pro­céder est admissible ici.

12) Utilisant le fait qu’en un point d’abscisse $z$ positive (fig. 5), le champ total est la somme du champ inci­dent et du champ rayonné par les différentes lames élémentaires d'épaisseur $dz'$à la cote $z'$, à droite et à gauche du point de cote $z$, établir que le champ${E_x}\left( z \right)$ vérifie l'équation intégrale :
${E_x}\left( z \right) = {E_{0i}}\left( {\exp - jkz} \right) - \left( {E_x^ + \left( z \right) + E_x^ - \left( z \right)} \right)$, où
$\begin{array}{c}E_x^ + \left( z \right) = \frac{1}{2}\left( {jk} \right)\left( {{N_0}\alpha } \right)\left( {\exp jkz} \right)\int\limits_z^\infty {{E_x}\left( {z'} \right)\left( {\exp - jkz'} \right)dz'} \\E_x^ - \left( z \right) = \frac{1}{2}\left( {jk} \right)\left( {{N_0}\alpha } \right)\left( {\exp - jkz} \right)\int\limits_0^z {{E_x}\left( {z'} \right)\left( {\exp jkz'} \right)dz'} .\end{array}$
fig. 5 : Décomposition du diélectrique en couches élémentaires.
13) On teste sur l’équation intégrale de la question 12) la solution ${E_x}\left( z \right) = C\exp - j\tilde \beta z$, où $\tilde \beta $ est un nombre complexe. On pose aussi $\tilde \beta = \tilde nk$, ce qui définit l’indice complexe $\tilde n = n - jq$. Quel est le sens physique des réels $n$ et $q$? Quel doit être le signe de la partie imaginaire de $\tilde \beta $ ? Exprimer ${\tilde n^2}$en fonction de la susceptibilité $\chi = {N_0}\alpha $.
14) En insérant la solution physiquement acceptable dans l'équation intégrale de la question 12), montrer que la valeur de la constante adéquate $C$ est : $C = \frac{{2{E_{0i}}}}{{\tilde n + 1}}$.
15) En sommant les champs rayonnés dans la région $z < 0$ par toutes les lames minces d'épais­seur $dz'$, montrer que l'expression du champ électrique réfléchi par le diélectrique se met sous la forme : ${{\bf{E}}_{\bf{r}}} = \tilde r{E_{0i}}{{\bf{\hat u}}_{\bf{x}}}\exp j\left( {\omega t + kz} \right)$, où $\tilde r = - \frac{{\tilde n - 1}}{{\tilde n + 1}}$ est le coefficient de réflexion en amplitude.
16) Montrer que, si le coeffi­cient de frottement $\eta $ est nul, tout se passe comme si le champ total se propageait à la vitesse de phase $\frac{c}{n}$. Cela est-il vrai quelle que soit la pulsation ω ?

Quatrième partie: diffraction par un écran opaque
On considère un écran mince d’épaisseur $\Delta z$ infini suivant Oxy, situé en z = 0, formé d'un matériau diélectrique totalement opaque à la pulsation $\omega $ et on admet que le champ électromagnétique rayonné par cet écran est assimilable à celui qui a été calculé dans la deuxième partie de ce problème. Dans toute cette quatrième partie, le coefficient de frottement $\eta $ sera, pour la commodité du calcul, supposé nul.
17) En utilisant le fait que l'écran est totalement opaque, montrer que le vecteur polarisation $\bf{P} = {\bf{P}_\bf{0}}\exp \left( {j\omega t} \right)$ vérifie la relation: ${\bf{E}_{\bf{0i}}} = \frac{1}{2}\left( {j\omega } \right)\left( {{\mu _0}c} \right){\bf{P}_\bf{0}}\Delta z$.
On ôte de la plaque précédente un "bouchon" diélectrique de forme quelconque (fig. 6). On obtient ainsi un écran percé d'une ouverture de forme quelconque, supposée cependant de dimension ca­rac­téris­tique grande devant la longueur d'onde. De ce fait, on supposera que la distribution de polari­sa­tion sur la plaque percée est pratiquement la même que celle de la plaque infinie. On cherche le champ électro­magnétique à droite de la plaque percée, c'est à dire le champ diffracté par l'ouverture.
fig. 6 : Diffraction par une ouverture dans fig. 7 : Notations pour la diffraction à l’infini.
une plaque diélectrique infinie. (Dimension de l’ouverture exagérée)
18) Montrer que le champ rayonné par la plaque percée d'un trou est identique, au signe près, au champ qui serait rayonné par le "bouchon" de diélectrique tout seul avec une distribution de polarisa­tion identique à celle de la plaque infinie.
19) Soient O un point "moyen" sur l'ouverture Σ et M un point en avant de l'ouverture, éloigné et situé de telle manière que l'angle entre OM et la normale au plan reste très faible (fig. 7). Les notations étant celles de la figure 7, montrer que le champ élec­trique rayonné en avant de la plaque s'écrit :
$\left( F \right)\quad \quad {{\mathbf{E}}_{\mathbf{rayonn\acute{e}}}}=-\frac{jk}{2\pi }{{E}_{0i}}{{\mathbf{\hat{u}}}_{\theta }}$
20) Comparer l’expression du champ rayonné -relation $\left( F \right)$- à celle résultant de l’application du principe d’Huygens-Fresnel. En particulier quelle phase l'expression $\left( F \right)$ conduit-elle à attribuer aux ondes élémentaires qui interviennent dans le principe d’Huygens-Fresnel ?
On souhaite appliquer la relation $\left( F \right)$ au cas où l’ouverture est rectangulaire de côtés a et b et de centre O (fig. 8). L'écran d'observation est un plan parallèle à l’ouverture situé à la distance D de O.
fig. 8 : Diffraction à l’infini par une ouverture rectangulaire centrée.
21) Montrer que, dans le cadre de la diffraction à l'infini (et toujours dans le cas des angles petits), la relation $\left( F \right)$peut s'écrire :
$\left( G \right)\quad \quad {{\mathbf{E}}_{\mathbf{rayonn\acute{e}}}}\approx \frac{jk}{2\pi }{{E}_{0i}}{{\mathbf{\hat{u}}}_{x}}\left( \frac{\exp j\left( \omega t-kD \right)}{D} \right)\iint_{\left( \Sigma \right)}{\left( \exp jk{{{\mathbf{\hat{u}}}}_{\mathbf{d}}}.\mathbf{OQ} \right)dS\left( Q \right)}$
22) Toujours dans le cas de l'ouver­ture rectangulaire de la figure 8, calculer ${\bf{E}}$ en un point M de l'écran d'observation de coordonnées ${X_m}$ et ${Y_m}$.
23) Décrire rapidement la distribution de l’intensité lumineuse$I = \left( {{\rm{une constante}}} \right)EE*$ sur l'écran. En particulier, expliquer qualitativement pourquoi, pour une fente donnée, l'intensité lumi­neuse au centre diminue quand la longueur d'onde augmente.

Autres Concours

2011  : Concours ENAC de  physique 2011  :  énoncé ,  corrigé Concours ICNA de  physique 2011  :  énoncé ,  corrigé Concours ICNA de ...