Recherche sur le blog!

Concours Mines-Ponts 1984 Filière M, P’ (Énoncé)

                                                                 Équilibre d’un clown sur un ballon
Dans tout le problème, les vecteurs sont notés en caractères gras.
Un ballon sphérique de rayon R, rigide, de masse m uniformément répartie en surface, roule sans glisser sur le sol horizontal de sorte que son centre reste dans le plan xOz d’un référentiel (R ) =(O, x, y, z) supposé galiléen, dont Oz désigne la verticale ascendante. L’intensité de la pesanteur est ; les vecteurs unitaires portés par les axes Ox, Oy, Oz sont respectivement désignés par ex, ey, ez et forment un trièdre (cf. figure 1). Le coefficient de frottement de glissement sur le sol Ox est constant et égal à f.
A l’instant initial = 0, le centre C du ballon immobile, a pour coordonnées x = y = 0, z = R. Un clown a ses pieds en un point A du ballon situé dans le plan xOz et tel que la droite CA fasse un angle a avec la verticale (cf. figure 1). Le clown marche ou court à petits pas sur le ballon en direction de son point le plus haut : à tout instant la droite instantanée CA fait l’angle a avec la verticale. Le clown est assimilé à un solide de masse M de centre de masse H : AH est constamment vertical ; AH = h =2R. On néglige l’inertie des parties mobiles du clown dans sa marche ou sa course à petits pas de sorte que son mouvement est, dans (R ), un mouvement de translation.


On désigne par v et a la vitesse et l’accélération de C dans (). La rotation du ballon dans () est comptée positivement suivant Oy f est l’angle de rotation et on pose $\dot \varphi  = \frac{{d\varphi }}{{dt}}$ (cf. figure 1).



I. CINEMATIQUE ET CINETIQUE

I.1.  



I.1.a. Quelles sont la vitesse vH et l’accélération aH de H dans (R ) ?
I.1.b. En déduire la vitesse vG et l’accélération aG du centre de masse G du système clown-ballon dans son mouvement par rapport à (R ) ?
I.2. Quelle est la relation traduisant le roulement sans glissement du ballon au point de contact I avec le sol ?
I.3. Quelle est la vitesse du clown par rapport à la surface du ballon, avec laquelle il est en contact ?
I.4. Montrer que le moment d’inertie J du ballon autour de l’axe Cy parallèle à Oy est $\frac{2}{3}m{R^2}$.

I.5.  

I.5.a. Quel est, dans (R ), le moment cinétique LC du ballon en son centre C ?
On exprimera LC en fonction de m, R et v = v.ex.
I.5.b. En déduire le moment cinétique LI du ballon, dans (R ), au point de contact I.

I.6.  

I.6.a. Quel est, dans (R ), le moment cinétique L’H du clown en H ?
En déduire le moment cinétique L’I, dans (R ), du clown en I.
I.6.b. Exprimer en fonction de R, v, m, M et a le moment cinétique total L du système clown-ballon en I, dans le référentiel (R ).

II. DYNAMIQUE




II.1. On considère le moment cinétique LP, d’un solide quelconque (S), de centre de masse G, calculé dans un référentiel (R ), en un point P quelconque de (S). Etablir le théorème du moment cinétique en P.

II.2.  

II.2.a. En appliquant le théorème du moment cinétique au point géométrique de contact I, montrer que l’accélération du point C est :
$a = \frac{{Mg\sin \alpha }}{{\frac{5}{3}m + M(3 + \cos \alpha )}}$
II.2.b. Application numérique : calculer a pour M = 60 kg ; m = 6,0 kg ; R = 0,50 m ; a = 5,0° ; g = 9,8 m.s-2

II.3.  

II.3.a. Calculer les composantes tangentielle T et normale N de la réaction du sol sur le ballon.
II.3.b. Montrer que si f = 0,2 il ne peut y avoir glissement ni au départ, ni en un instant ultérieur.
II.4. Le clown ne peut courir à petits pas à plus de 2,0 m/s par rapport à la surface du ballon.
II.4.a. Au bout de combien de temps t, cette vitesse est-elle atteinte ? Quelle est la distance L parcourue par le ballon ? Que se passe-t-il ensuite ? (On demande pour t et L les expressions littérales et les valeurs numériques).
II.4.b. Quel est le maximum de la puissance utile Pu fournie par le clown, c’est-à-dire la puissance fournie pour accroître dans (R ) l’énergie cinétique du système clown-ballon ? On donnera l’expression littérale de Pu au cours du temps, puis sa valeur maximale, littérale et numérique.

III. STATIQUE ET DYNAMIQUE SUR UN PLAN INCLINÉ




Le ballon est désormais sur une planche inclinée, dont la ligne de plus grande pente, choisie comme axe Ox du référentiel (R’ ) galiléen, fait l’angle b avec le sol. L’axe Oz est orthogonal à Ox et dirigé vers le haut (figure 2).
Le clown est toujours vertical, c’est-à-dire que AH est orthogonal au sol. L’angle de CA avec IC est noté a, comme dans les parties I et II (figure 2).


III.1.
On suppose que le clown est en équilibre sur le ballon et on admet que le coefficient de frottement du clown sur le ballon en A est suffisant pour que le glissement soit absent en A.
III.1.a. Quelle est la valeur de a qui, pour b donné, permet dans (R’ ) l’équilibre du système clown-ballon.
III.1.b. Quelle est la condition sur b pour que le glissement en I ne s’amorce pas ? On prendra f = 0,2.
III.1.c. Calculer numériquement a à l’équilibre pour b = 5,0°.
III.2. Le système clown-ballon descend le plan incliné suivant la ligne de plus grande pente Ox : $v \ge 0$. Le clown marche ou court pour maintenir a constant. Initialement, le ballon et le clown sont immobiles.
III.2.a. Exprimer dans (R’ ) le moment cinétique total en I en fonction de m, M, R, v, a et b.
Vérifier ce résultat dans un cas particulier.
III.2.b. Montrer que le mouvement de C est uniformément varié. On donnera l’expression de ${\bf{a}}(m,M,g,\alpha ,\beta )$. Vérifier cette expression dans un cas particulier et retrouver le résultat de la question III.1.
III.2.c. On prend a = b = 5°. Calculer a puis la distance parcourue quand le clown atteint la vitesse limite, par rapport au ballon, de 2 m/s. Comparer au résultat de II.4 et commenter.
III.3. Le clown veut avoir un mouvement ascendant, c’est-à-dire remonter la pente Ox.
III.3.a. Montrer que a doit satisfaire à une inégalité dépendant de b. Si b = 5,0°, la valeur a = -15° est-elle satisfaisante ? Calculer a dans ce cas.
III.3.b. Calculer les composantes tangentielle et normale de la réaction de la planche sur le ballon et vérifier que le glissement ne peut s’amorcer si f = 0,2.
III.3.c. Quelle longueur le ballon peut-il parcourir avant que le clown perde l’équilibre ? A quelle hauteur cela correspond-il ?
III.3.d. Comment devrait-on définir ici la puissance utile développée par le clown ? Calculer sa valeur maximale compatible avec l’équilibre du clown sur le ballon. Comparer au résultat de la question II.4.b et commenter.



Fin du problème

Aucun commentaire:

Enregistrer un commentaire

Autres Concours

2011  : Concours ENAC de  physique 2011  :  énoncé ,  corrigé Concours ICNA de  physique 2011  :  énoncé ,  corrigé Concours ICNA de ...