Recherche sur le blog!

Concours Physique I École Polytechnique (MP) 2000 (Énoncé)

ÉCOLE POLYTECHNIQUE concours 2000 FILIÈRE MP
CONCOURS D'ADMISSION
PREMIÈRE COMPOSITION DE PHYSIQUE
(Durée ; 4 heures)
L'utilisation des calculatrices est autorisée pour cette épreuve.
Propulseur électromagnétique
L'objet de ce problème est l'analyse d'un propulseur électromagnétique capable d'accélérer de petites masses de l'ordre du gramme et de les éjecter à des vitesses supersoniques de l'ordre de plusieurs kilomètres par seconde. Dans la première partie, on en étudie le principe et on évalue les ordres de grandeur des paramètres cruciaux. La poussée sur le projectile est en fait exercée par un plasma ; ses propriétés et son action sont analysées dans la seconde partie. Enfin, la troisième et dernière partie est consacrée à une étude dynamique sur un modèle électromécanique du système.
Les trois parties sont largement indépendantes. Dans tout le problème, on se placera dans l'approximation des régimes quasi‑permanents (A.R.Q.P.).
Première partie
Principe et ordres de grandeur
A. Un circuit électrique rigide est caractérisé par sa résistance R et son inductance L. Soit I(t) l'intensité du courant qui le parcourt.
1. Exprimer le flux magnétique $\Phi $ propre à travers le circuit. En déduire la force électromo­trice d’auto-induction.
2. Lors de l'établissement du courant de 0 à I(t), le générateur doit fournir, en plus de l'éner­gie “dissipée ” par effet Joule, une énergie supplémentaire Em, appelée “énergie magnétique ”. Exprimer Em en fonction de L et de I(t).

Concours Physique II École Polytechnique (MP) 2000 (Énoncé)

ÉCOLE POLYTECHNIQUE
FILIÈRE MP
CONCOURS D’ADMISSION 2000
DEUXIÈME COMPOSITION DE PHYSIQUE
(Durée : 4 heures)
Lépreuve comporte deux problèmes indépendants, qui seront affectés \(du\) même poids dans le barème de notation. Lutilisation des calculatrices est autorisée pour cette épreuve.
\( \star \star \star \)
Premier problème
L’objet de ce problème est l’étude de la répartition de charges « induite » dans un conducteur par une charge ponctuelle \(q\) située dans son voisinage, et le calcul de la force exercée alors sur la charge, l’ensemble étant en équilibre électrostatique.
On donne \( \in 0 = 8,85 \times {10^{ - 12}}F{m^{ - 1}}\)
Première partie
Un matériau conducteur semi‐infini est limité par sa surface libre plane que l’on prendra comme plan \(xOy\). Sur l’axe \(Oz\), perpendiculaire à cette surface et orienté vers l’intérieur du conducteur, on place à l’extérieur du conducteur une charge ponctuelle \(q\) positive, en \(A\), à la distance \(h\) de la surface libre (Fig. 1). On suppose dans cette première partie que le matériau est un conducteur parfait.
1. \(a)\) Quel est, à l’équilibre, le champ électrique \(Z\) à l’intérieur du conducteur? Que peut‐ on dire du potentiel électrique dans le conducteur? On prendra le potentiel nul à grande distance, aussi bien à l’intérieur qu’à l’extérieur du conducteur.
b) Montrer que les charges électriques apparaissant dans ce conducteur parfait sous l’in‐ fluence de la charge \(q\) sont nécessairement situées à la surface du conducteur.

Concours Physique I École Polytechnique (PC) 2000 (Énoncé)

ÉCOLE POLYTECHNIQUE
ÉCOLE SUPÉRIEURE DE PHYSIQUE ET CHIMIE INDUSTRIELLES
CONCOURS D’ADMISSION 2000 FILIÈRE PC
PREMIÈRE COMPOSITION DE PHYSIQUE
(Durée : 4 heures)
L’utilisation des calculatrices est autorisée pour cette épreuve.
\( \star \star \star \)
Phénomènes météorologiques associés à des mouvements verticaux de masses d’air
Les phénomènes météorologiques ont des origines multiples; une compréhension complète nécessite de prendre en compte de nombreux bilans d’échange (rayonnement, cycle de l’eau). Toutefois un certain nombre de phénomènes sont uniquement dus au déplacement adiabatique de masses d’air. Nous nous proposons dans ce problème d’analyser certains d’entre eux et étudierons leurs conséquences sur la formation de certains types de nuages.
Nous nous intéresserons dans une première partie aux mouvements verticaux d’air sec puis dans une seconde partie aux mouvements d’air humide et au phénomène de condensation. Enfin la troisième partie étudie quelques aspects de l’air humide saturé.
On supposera le champ de pesanteur localement uniforme : \(\vec g = - g\overrightarrow {{e_z}} \) où \(\overrightarrow {{e_z}} \) est le vecteur unitaire dirigé selon la verticale ascendante.
Constantes et données numériques.
Constante des gaz parfaits Accélération de la pesanteur
\(R = 8,3J{K^{ - 1}}mo{1^{ - 1}}\) \(g = 9,8m{s^{ - 2}}\)
Air sec
Masse molaire moyenne \({M_a} = 29gmo{1^{ - 1}}\)
Capacité thermique massique à pression constante \({c_p} = 1,0 \times {10^3}J{K^{ - 1}}k{g^{ - 1}}\)
Rapport des capacités thermiques à \(p\) et à \(V\) constants \(\gamma = {c_p}/{c_v} = 1,40\)
Eau
Masse molaire \({M_e} = 18gmo{1^{ - 1}}\)
Température du point triple \({T_t} = 273,16K\left( {{{0,01}^ \circ }C} \right)\)
Pression du point triple \({p_t} = 610{\rm{ Pa}}\)
Enthalpie massique de vaporisation à \({0^o}C\) \({L_v} = 2,50 \times {10^6}Jk{g^{ - 1}}\)
Enthalpie massique de vaporisation à \({100^0}C\) \({L_v} = 2,25 \times {10^6}Jk{g^{ - 1}}\)
Première partie
Les mouvements d’air dans l’atmosphère peuvent se présenter sous forme d’oscillations verticales. Nous cherchons à en déterminer les principales caractéristiques.
1. Pour une atmosphère en équilibre « hydrostatique » les différentes grandeurs physiques qui la caractérisent ne dépendent que de l’altitude \(z.\)
a) Donner l’équation qui relie à l’équilibre la pression \(p\left( z \right)\) , la masse volumique \(\rho \left( z \right)\) et \(g.\)
b) On considère l’air sec comme un gaz parfait; on suppose de plus l’atmosphère isotherme de température \({T_0}\). Déterminer \(p\left( z \right)\) et \(\rho \left( z \right)\) à l’aide de \(p\left( 0 \right),\) \(\rho \left( 0 \right),\) \({M_a},\) \(g,\) \(R\) et \({T_0}\)
c) Calculer la hauteur caractéristique correspondante pour une température de \({10^o}\) C.

Concours Physique II École Polytechnique (PC) 2000 (Énoncé)

ÉCOLE POLYTECHNIQUE
ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES
CONCOURS D’ADMISSION 2000 FILIÈRE PC
DEUXIÈME COMPOSITION DE PHYSIQUE
(Durée : 4 heures)
L’utilisation des calculatrices est autorisée pour cette épreuve.
\( \star \star \star \)
Commutateur optoélectronique
Dans un circuit intégré électronique l’information est véhiculée par des électrons. Un des buts de l’optoélectronique est de remplacer autant que faire se peut l’électron par le photon. On sera donc amené à acheminer des faisceaux lumineux d’un point d’un circuit où ils auront été mis en forme à un autre point où ils subiront des opérations logiques. Ce transport s’effectue à l’aide de guides optiques. Le but de ce problème est l’étude de quelques propriétés de ces guides. Dans la première partie on s’intéresse au principe de guidage des ondes lumineuses dans le cadre d’un modèle théorique simple. Une situation plus réaliste où le guidage des ondes est plus complexe est étudiée dans la deuxième partie. Dans la troisième partie on introduira un couplage entre deux guides optiques et on utilisera ce couplage dans la quatrième partie pour réaliser un commutateur électro‐optique.

Formulaire
Célérité des ondes électromagnétiques dans le vide : \(c = 3 \times {10^8}m{s^{ - 1}}\)
Equations de Maxwell pour les milieux diélectriques non magnétiques :
$div\vec{D}=\rho ~div\vec{B}=0$ (1)
$r\vec{o}t\vec{E}=-\partial \vec{B}/\partial t~r\vec{o}t\vec{B}={{\mu }_{0}}\left( \vec{j}+\partial \vec{D}/\partial t \right)$ (2)
Pour tout champ de vecteurs \(\vec A\), on rappelle que:
$r\vec{o}tr\vec{o}t\vec{A}=gr\vec{a}d\left( div\vec{A} \right)-\vec{\vartriangle }\vec{A}$
Première partie
Principe du guidage d’une onde lumineuse
On s’intéresse à la propagation d’une onde électromagnétique monochromatique de pulsation \(\omega \) dans un guide dont le schéma est représenté sur la figure 1. Ce guide est constitué d’une couche coeur infinie d’arséniure de gallium \((\)GaAs) , d’épaisseur \(d\), insérée entre deux plans parfaitement conducteurs, totalement réfléchissants. L’arséniure de gallium est un matériau semi‐conducteur que l’on considérera comme un milieu diélectrique linéaire, homogène, isotrope et non magné‐ tique. On le caractérise par son indice de réfraction \(\left( \omega \right)\) . À la pulsation \(\omega \) de l’onde, on a \(n\left( \omega \right) = n = 3,3.\)

Concours Physique I École Polytechnique (MP) 1999 (Corrigé)

Corrigé de Laurent BEAU
Professeur de Sciences Physiques en Math Spé MP*

Lycée Mohamed V. CASABLANCA

N’hésitez pas à me signaler des erreurs ou à me suggérer des commentaires ou des réponses plus "élégantes". Merci.

Collisions nucléaires et fragmentation

Première partie

Analyse cinématique d'une collision

  1. Cinématique du problème à deux corps.
    Nous noterons M1 et M2 les masses respectives et B1 et B2 les positions respectives des noyaux cible (indice 1) et projectile (indice 2)

    1. \(\left\{ \begin{array}{l}{{\bf{R}}_G} = \frac{{{M_1}{{\bf{r}}_{\bf{1}}} + {M_2}{{\bf{r}}_{\bf{2}}}}}{{{M_1} + {M_2}}} = \frac{{{A_1}{{\bf{r}}_{\bf{1}}} + {A_2}{{\bf{r}}_{\bf{2}}}}}{{{A_1} + {A_2}}}\\{\bf{r}} = {{\bf{B}}_{\bf{1}}}{{\bf{B}}_{\bf{2}}} = {{\bf{r}}_{\bf{2}}} - {{\bf{r}}_{\bf{1}}}\end{array} \right.\) \( \Rightarrow \left\{ \begin{array}{l}{{\bf{r}}_{\bf{1}}} = {{\bf{R}}_{\bf{G}}} - \frac{{{A_2}}}{{{A_1} + {A_2}}}{\bf{r}}\\{{\bf{r}}_2} = {{\bf{R}}_{\bf{G}}} + \frac{{{A_1}}}{{{A_1} + {A_2}}}{\bf{r}}\end{array} \right.\)

Concours Physique I École Polytechnique (MP) 1999 (Énoncé)

(Durée: 3 heures)
L'utilisation des calculatrices est autorisée pour cette épreuve.

Collisions nucléaires et fragmentation

Dans ce problème on considère des collisions entre noyaux atomiques, qui permettent d'étudier les propriétés dynamiques de la matière constituant ces noyaux. On s'intéressera en particulier à la réponse de cette matière à une compression, due au recouvrement des deux noyaux lors de la collision. On rappelle qu'un noyau est constitué de A nucléons (N neutrons non chargés, Z protons portant chacun une charge élémentaire positive e, avec N + Z = A). On assimile le noyau de masse \({M_A} = mA\) à une sphère homogène de rayon \(R = {r_0}{A^{1/3}}\)et de charge totale Q = Ze (supposée uniformément répartie à l'intérieur de la sphère de rayon R). On admettra que les distributions de charge restent toujours uniformes lors de la collision, et on supposera les deux noyaux initialement infiniment éloignés l'un de l'autre.
Le noyau cible (indice 1) est initialement au repos. On note O l'origine du référentiel du laboratoire par rapport auquel est mesurée Elab énergie cinétique initiale du noyau projectile (indice 2).
Les ordres de grandeur des énergies mises en jeu dans ce problème justifient l'emploi de la mécanique non-relativiste.
Pour les applications numériques, on utilisera le mégaélectronvolt (1 MeV = 106 eV) et le fentomètre (1 fm = 10–15 m), bien adaptés aux ordres de grandeur de la physique considérée ici. On donne :
Energie de masse du neutron ou du proton \(m{c^2} = {10^3}{\rm{MeV}}\)
Constante de couplage électrostatique \({e^2}/4\pi {\varepsilon _0} = 1,44{\rm{ MeV}}{\rm{.fm}}\)
Paramètre de rayon \({r_0} = 1,16{\rm{ fm}}\)
Paramètre de compressibilité \(K = 250{\rm{ MeV}}\)

Autres Concours

2011  : Concours ENAC de  physique 2011  :  énoncé ,  corrigé Concours ICNA de  physique 2011  :  énoncé ,  corrigé Concours ICNA de ...