Processing math: 100%

Recherche sur le blog!

Concours Physique I École Polytechnique (MP) 2001 (Corrigé)

ECOLE POLYTECHNIQUE Filière MP

Première composition de physique Accélérateurs linéaires

Première partie

Accélérateur électrostatique

1. La conservation de l’énergie mécanique s’écrit 12mv2A+eVA=12mv2B+eVB d’où :
vB=v2A+2eUABm
Application numérique : vB vaut 11,9 106 m.s-1 pour un proton et 1,02 106 m.s-1 pour un ion césium 137.
2. Le raisonnement de la question précédente ne faisant pas intervenir la forme des armatures, le résultat n’en dépend pas.

3.a) On commence par supposer la diode passante. Elle se comporte alors comme un court-circuit (diode idéale) et la charge de l’armature supérieure du condensateur est Q=CUC(t)=CU(t)=CU0sinωt. L’intensité qui traverse (de gauche à droite ) la diode est dans ce cas i=dQdt=CωU0cosωt. La diode reste effectivement passante tant que i est positive donc pendant le premier quart de période. Ensuite, elle se bloque donc la charge du condensateur reste constante (CU0). UC est à partir de ce moment là constamment égale à U0 et donc supérieure (ou égale) à U(t) : la diode ne redevient jamais passante.
3.b) La tension aux bornes de la diode est, en valeur absolue, |U(t)UC(t)|=U0(1sinωt) (après le premier quart de période) dont la valeur maximale est 2U0.

Concours Physique II École Polytechnique (MP) 2001 (Énoncé)

CONCOURS D'ADMISSION 2001
PREMIÈRE COMPOSITION DE PHYSIQUE
(Durée: 4 heures)
L'utilisation des calculatrices est autorisée pour cette épreuve.
Accélérateurs linéaires
Les trois parties du problème sont largement indépendantes
Dans ce problème, on étudie diverses méthodes d'accélération d'ions positivement chargés par des champs électriques. On se place dans l'approximation des régimes quasi‑ stationnaires, et dans le cadre de la mécanique newtonienne. On donne :
Masse du proton mp = 1,7.10-27 kg
Charge élémentaire e= 1,6.10-19C
Permittivité du vide ε0 = 8,8.10-12SI
Perméabilité magnétique du vide µ0 = 4 π.10-7 SI
Première partie
Accélérateur électrostatique
1. Des particules de masse m et de charge e > 0 sont accélérées par un champ électrique E supposé uniforme, régnant entre les deux armatures A et B d’un condensateur plan, distantes de d, et de potentiels VA et VB . Le dispositif est représenté sur la figure 1. On note vA la vitesse des particules au niveau de l’armature A. Calculer leur vitesse vB au niveau de l'armature B en fonction de vA et de la différence de potentiel UAB = VA – VB entre les deux armatures.
Application numérique : On suppose vA négligeable devant vB Calculer vB pour un proton. puis pour un ion césium 137Cs+ dont la masse est approximativement 137 fois celle du prtoton. On donne UAB= 750 kV.
2. Le résultat précédent serait‑il modifié pour une forme différente des armatures du condensateur

Concours Physique II École Polytechnique (MP) 2001 (Corrigé)

ECOLE POLYTECHNIQUE FILIERE MP

CONCOURS D’ADMISSION 2001

DEUXIEME COMPOSITION DE PHYSIQUE

(durée : 4 heures)
Le traitement des eaux
Première partie
Purification par décantation en bassin
1.a) Le solide est soumis à son poids et à la poussée d’Archimède. La décantation n’est possible que si la résultante de ces deux actions est vers le bas. Or :
f=(μsolμ)Vg=(μsolμ)Vgez
Il faut donc :
μsol>μ
1.b) A l’aide de l’expression de la force de Stokes, on trouve que ν s’exprime en m2.s–1.
La vitesse de décantation est atteinte lorsque la force de Stokes équilibre la force résultante vers le bas, donc :
(μsolμ)Vg=6πμνRvd
puis, avec V=43πR3, vd=2g9ν(d1)R2
1.c) Application numérique :
R = 50 µm ; vd = 6,9 mm.s–1 T1 mètre = 2,4 minutes
R = 5 µm ; vd = 0,026 mm.s–1 T1 mètre = 4 heures
R = 0,5 µm ; vd = 2,6.10–7 m.s–1 T1 mètre = 17 jours
La durée de décantation pour les particules de 0,5 µm de rayon est rédhibitoire. Il faut employer une autre méthode que la décantation simple pour éliminer les petites particules.
2.a) Le champ électrique est dirigé de la surface de la particule, vers la solution, c’est-à-dire selon les x croissants.
Dans la solution : div E = ρ/ε avec E = – grad V, donc
ΔV+ρε=0

Concours Physique II École Polytechnique (MP) 2001 (Énoncé)

ÉCOLE POLYTECHNIQUE FILIÈRE MP
CONCOURS D'ADMISSION 2001
DEUXIÈME COMPOSITION DE PHYSIQUE
(Durée : 4 heures)
L'utilisation des calculatrices est autorisée pour cette épreuve.
Le traitement des eaux
Le but de ce problème est d'étudier de façon simplifiée quelques étapes du traitement des eaux de rivière afin de les rendre potables. Les débris les plus gros peuvent facilement être éliminés par une filtration sur grille, mais il semble plus difficile d'ôter les particules de petite taille ou dissoutes. Les différentes parties du problème suivent, dans l'ordre chronologique, quelques étapes du parcours de l'eau en usine de traitement.
La première partie concerne la purification par décantation en bassin qui permet d'éliminer les particules de taille supérieure à une dizaine de micromètres et, après coagulation, les particules colloïdales dont la taille est inférieure à quelques micromètres. Certaines molécules ne pouvant être éliminées par simple décantation, il faut utiliser l'adsorption moléculaire par le charbon actif en poudre que décrit la seconde partie. Enfin, la troisième partie détaille les problèmes de mise à l'équilibre de calcification de l'eau. Ces trois parties peuvent être traitées indépendamment.
Constantes physiques :
Intensité du champ de pesanteur g=9,8ms2
Masse volumique de l'eau μ=1,000.103kgm3
Viscosité cinématique de l'eau à 10°C ν=1,31.106SI
Charge élémentaire e=1,6.1019C
Permittivité du vide ε0=8,84.1012SI
Constante de Boltzmann kB=1,38.1023JK1
Constante d'Avogadro NA=6,02.1023mol1
Masses molaires : C = 12 g mol–1, O = 16 g mol–1, Na = 23 g mol–1, CI = 35,5 g mol–1, Ca = 40 g mol–1.

Concours Physique II École Polytechnique (PC) 2001 (Corrigé)

Ecole Polytechnique – ESPCI

Deuxième composition de physique ; année 2001 ; filière PC
Première partie : Propagation d’une onde sonore dans un tuyau.
1. Équation d’Euler, en négligeant la pesanteur : ρDvDt=gradP. L’approximation acoustique (on ne garde que les termes d’ordre 1), et le fait que P = P0 + p, donnent alors vt+1ρ0px=0 (1)
2. a) Masse contenue à l’instant t dans une tranche [x,x+dx] : dM(t) = ρ(x,t) S(x,t) dx. Elle ne peut varier que par les flux de masse en x et x+dx :
d(dM)dt=+ρ(x,t)S(x,t)v(x,t)ρ(x+dx,t)S(x+dx,t)v(x+dx,t)
D’où l’équation t(ρS)+x(ρSv)=0 (2)
b) L’équation d’Euler est une équation locale, valable en tout point du fluide. Elle est indépendante des conditions aux limites.
c) (2) s’écrit t(ρS)+x((ρ0+δρ)(S0+δS)v)=0 ; S0 étant indépendante de x (énoncé), et en ne gardant que les termes d’ordre 1, il vient : t(ρS)+ρ0S0vx=0 (2’).

Concours Physique I École Polytechnique (MP) 2000 (Corrigé)

ECOLE POLYTECHNIQUE 2000 PREMIERE COMPOSITION DE PHYSIQUE MP

Propulseur électromagnétique

Première partie

Principe et ordres de grandeur

A – 1. Par définition de L : Φ = LI(t) . Alors, d’après la loi de Faraday : e=dΦdt=LdIdt (ici L est constant).
2. On applique la loi d’Ohm au circuit fermé : E+e=RI(en notant E la force électromotrice du générateur). La puissance fournie par le générateur est alors P=EI=RI2+LIdIdt=PJoule+dEmdtEm (« énergie magnétique ») vaut :
Em=12LI2
B1. Le courant crée un champ magnétique et le barreau subit alors une force de Laplace.
2. Il faut maintenant tenir compte, dans l’application de la loi de Faraday, du fait que L dépend de x et donc du temps : e=dΦdt=LdIdtI˙xdLdx et P=EI=RI2+LIdIdt+I2˙xdLdx=PJoule+LIdIdt+I2˙xdLdx
3. En utilisant l’expression du A – 2. dEmdt=LIdIdt+12˙xI2dLdx donc P=PJoule+dEmdt+12I2˙xdLdx. Le dernier terme de cette expression est la puissance mécanique Pméca.=12I2˙xdLdx .
4. Avec Pméca =F˙x on obtient l’expression de l’énoncé : F=12I2dLdx .

Autres Concours

2011  : Concours ENAC de  physique 2011  :  énoncé ,  corrigé Concours ICNA de  physique 2011  :  énoncé ,  corrigé Concours ICNA de ...