Recherche sur le blog!

Concours Physique Concours Commun TPE 1994 (Corrigé)

Corrigé épreuve physique commune - T.P.E 1994
PREMIER PROBLÈME - ÉLECTRONIQUE
I Référence de tension à diode Zener
I-1)
La loi des mailles et la loi des nœuds fournissent tout d'abord:
$\left\{ \begin{array}{l}{V_1} = {V_2} + R{I_1}\\U = - {V_2}\\{I_1} + I = {I_2}\end{array} \right.$
Il est possible d'obtenir V2 = V1 -R(I2 -I) = f(V1,I2) à condition d'éliminer I. On distingue alors suivant la valeur de U
  • U > Vd ⇔ Dz est en mode passant (Zone 1 de la figure 1)
${{\text{V}}_{\text{2}}}=\frac{{{R}_{d}}}{R+{{R}_{d}}}{{V}_{1}}-\frac{R{{R}_{d}}}{R+{{R}_{d}}}{{I}_{2}}+\frac{R{{V}_{d}}}{R+{{R}_{d}}}\text{ Si }{{\text{V}}_{\text{2}}}<-{{V}_{d}}$
$I = \frac{{U - {V_d}}}{{{R_d}}} = \frac{{ - {V_2} - {V_d}}}{{{R_d}}}$ $ \Rightarrow {\rm{ }}{{\rm{V}}_{\rm{2}}} = {V_1} - \frac{R}{{{R_d}}}({R_d}{I_2} + {V_2} + {V_d})$ d'où le résultat:
  • -Vz < U < Vd ⇔ Dz est en mode bloqué (Zone 2 de la figure 1) alors I = 0
d'où le résultat:
$\Rightarrow \text{ }{{\text{V}}_{\text{2}}}={{V}_{1}}-R{{I}_{2}}\text{ si }{{\text{V}}_{\text{2 }}}<\text{ -}{{\text{V}}_{\text{d}}}$
  • U <- Vz ⇔ Dz est en mode passant inverse (Zone 3 de la figure 1)
$I = \frac{{U + {V_z}}}{{{R_z}}} = \frac{{ - {V_2} + {V_z}}}{{{R_z}}}$ $ \Rightarrow {\rm{ }}{{\rm{V}}_{\rm{2}}} = {V_1} - \frac{R}{{{R_z}}}({R_z}{I_2} + {V_2} - {V_z})$ d'où le résultat:
$\Rightarrow \text{ }{{\text{V}}_{\text{2}}}={{V}_{1}}-\frac{R}{{{R}_{z}}}({{R}_{z}}{{I}_{2}}+{{V}_{2}}-{{V}_{z}})$

I-2)
On en déduit que la caractéristique V2 = f(I2) à V1 Cte est une fonction affine par morceaux
Zone 1:pente= ${\rm{ }}\frac{{{\rm{ - R}}{{\rm{R}}_{\rm{d}}}}}{{R + {R_d}}} \approx - {R_d}$
Zone 2:pente= ${\rm{ }} - R$
Zone 3:pente= ${\rm{ }}\frac{{{\rm{ - R}}{{\rm{R}}_{\rm{z}}}}}{{R + {R_z}}} \approx - {R_z}$
La zone 3 ayant une pente quasi nulle représente le domaine de régulation V2 ≈Vz
Lorsque le point de fonctionnement se trouve dans la zone 1 le courant I2 et la tension V2 sont de signes contraires, ce qui veut dire que l'on a affaire à une charge constituée par un générateur. Les rôles de l'entrée et de la sortie sont inversés.
I-3)
Cette fois les pentes sont:
Zone 1: pente = $\frac{{{{\rm{R}}_{\rm{z}}}}}{{R + {R_z}}} \approx \frac{{{{\rm{R}}_{\rm{z}}}}}{R}$
Zone 2: pente = 1
Zone 3: pente = $\frac{{{{\rm{R}}_{\rm{d}}}}}{{R + {R_d}}} \approx \frac{{{{\rm{R}}_{\rm{d}}}}}{R}$
La zone 3 ayant une pente quasi nulle représente le domaine de régulation V2 ≈Vz
I-4)Dans la zone 3 on a établi que : ${V_2} = \frac{{{R_z}}}{{R + {R_z}}}{V_1} - \frac{{R{R_z}}}{{R + {R_z}}}{I_2} + \frac{R}{{R + {R_z}}}{V_z}$
Donc les variations sont données par: $\Delta {V_2} = \frac{{{R_z}}}{{R + {R_z}}}\Delta {V_1} - \frac{{R{R_z}}}{{R + {R_z}}}\Delta {I_2} = S\Delta {V_1} - \rho \Delta {I_2}$
$S=\frac{{{R}_{z}}}{R+{{R}_{z}}}\approx \frac{{{\text{R}}_{\text{z}}}}{\text{R}}\text{ et }\rho \text{=}\frac{R{{R}_{z}}}{R+{{R}_{z}}}\approx {{R}_{z}}$
II Fonctions à seuil
II-1) L'A-O est en régime linéaire donc V- est nul. Alors puisque E1 est positive, I1 est positif
II-1-a)Si VS est positif (strictement) alors le courant I2 est négatif et I0 est positif (strictement).
Alors i1 =I1 -I2 est positif, donc la diode D1 est passante,
Alors VK = V- = 0 comme VS,
Alors la diode D2 est traversée par i2 positif ou nul ⇒ I2 =I0 +i2 est positif
Il y a donc contradiction logique et VS ne peut pas être strictement positf. II-1-b)Si VS est négatif (strictement) alors le courant I2 est positif et I0 est négatif (strictement).
Alors i2 =I0 -I2 est négatif strictement, mais i2 ne peut être que positif ou nul donc nouvelle contradiction logique et VS ne peut pas être strictement négatif. II-1-c) VS ne peut être que nul (D2 est au repos, D1 traversée par I1 court-circuite R2 ).

II-2) V- est toujours nul. Et puisque E1 est négative, I1 est négatif.
• Si VS est négatif ou nul alors le courant I2 est positif ou nul.
Alors i1 =I1 -I2 est négatif, ce qui n'est pas possible,
VS ne peut pas être strictement négatif ou nul.
• Si VS est positif (strictement) alors le courant I2 est négatif, I0 est positif
Alors i2 =I0 -I2 est positif (strictement), la diode D2 est passante.
Alors VK = VS > 0 la diode D1 est bloquée et on a I1 = I2 ${\rm{ soit }}\frac{{{{\rm{E}}_{\rm{1}}}}}{{{{\rm{R}}_{\rm{1}}}}} = - \frac{{{V_S}}}{{{R_2}}}$ • La seule situation possible est: ${\rm{ }}{{\rm{V}}_{\rm{S}}} = - \frac{{{{\rm{R}}_{\rm{2}}}}}{{{{\rm{R}}_{\rm{1}}}}}{E_1}{\rm{ }}$
II-3)
La caractéristique VS = f(E1) est donnée ci-contre :
C'est celle d'un ampli-inverseur qui au delà d'un certain seuil (zéro ici) est coupé.
II-4)
II-4a) Plusieurs solutions sont possibles pour placer les sources dont les valeurs sont algébriques.
Un schéma classique est représenté ci-contre et en absence d'autres défautson peut dire que l'on a ε = 0
II-4b) Pour un A-O 741 on a typiquement:
Ed de l'ordre de quelques mV
Ip de l'ordre de quelques nA
II-4c)On admet que les défauts ne modifient pas l'état prévu des diodes. Pour E1 > 0 on a D1 passante et D2 bloquée. D'où le schéma:
$\begin{array}{l}{I_2} = {I_0}{\rm{ }} \Rightarrow {\rm{ }}\\\frac{{{{\rm{E}}_{\rm{d}}} - {V_S}}}{{{R_2}}} = \frac{{{V_S}}}{{{R_L}}}\\{V_S} = \frac{{{R_L}}}{{{R_2} + {R_L}}}{E_d}\end{array}$
Mais D2 bloquée ⇒
V- -VS = Ed - VS < 0 impose que Ed <0
Sinon D2 passante est alors VS = Ed
II-5)VS = µε avec ε = V- - V+ = VA Mais l'amplificateur n'ayant pour seul défaut qu'un gain fini on peut écrire, d'après le théorème de Millman:
${{\rm{V}}_{\rm{A}}}\left( {\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}} \right) = \frac{E}{{{R_1}}} + \frac{{{V_S}}}{{{R_2}}}{\rm{ }} \Rightarrow {\rm{ }} - \frac{{{{\rm{V}}_{\rm{S}}}}}{\mu }\left( {\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}} \right) = \frac{E}{{{R_1}}} + \frac{{{V_S}}}{{{R_2}}}{\rm{ }}$
\[{{V}_{S}}=\left( \frac{1}{\mu {{R}_{1}}}+\frac{1}{\mu {{R}_{2}}}+\frac{1}{{{R}_{2}}} \right)=-\frac{E}{{{R}_{1}}}\Rightarrow \frac{{{V}_{S}}}{E}=\frac{-1}{{{R}_{1}}\left( \frac{1}{\mu {{R}_{1}}}+\frac{1}{\mu {{R}_{2}}}+\frac{1}{{{R}_{2}}} \right)}=\frac{-{{R}_{2}}/{{R}_{1}}}{1+\frac{1}{\mu }\left( \frac{{{R}_{1}}+{{R}_{2}}}{{{R}_{1}}} \right)}\] Le montage est donc celui d'un ampli-inverseur idéal rétroactionné par un opérateur de retour β vérifiant: $\beta .(gain{\rm{ ideal) = }}\frac{{\rm{1}}}{{\mu {\rm{b}}}}$ Or on sait qu'une rétroaction diminue le gain de l'opérateur direct. C'est bien vérifié ici.
II-6)
Si les défauts ne modifient pas l'état prévu des diodes. Pour E1<0 D2 est passante, D1 est bloquée. Le théorème de Millman donne:
$\begin{array}{l}{\rm{ }}{V^ - } = - \varepsilon = \frac{{\frac{{{E_1}}}{{{R_1}}} + \frac{{{V_S}}}{{{R_2}}}}}{{\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}}}}\\{\rm{et }}\mu \varepsilon = {U_2} + {V_S}\end{array}$
On peut éliminer ε et avoir VS en fonction de g(i2 )=U2
On obtient ainsi:
\[-{{V}_{S}}\left( \frac{1+g({{i}_{2}})/{{V}_{s}}}{\mu } \right)=\frac{\frac{{{E}_{1}}}{{{R}_{2}}}+\frac{{{V}_{S}}}{{{R}_{2}}}}{\frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}}}\Rightarrow {{V}_{S}}=-\frac{\frac{{{E}_{1}}}{{{R}_{1}}}}{\frac{1}{{{R}_{2}}}+\left( \frac{1+g({{i}_{2}})/{{V}_{s}}}{\mu } \right).\left( \frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}} \right)}=\frac{{{V}_{0}}}{1+K\left( 1+g({{i}_{2}})/V \right)}\] A condition de poser: ${V_0} = - \frac{{{R_2}}}{{{R_1}}}{E_1}{\rm{ et K = }}\frac{{{{\rm{R}}_{\rm{2}}}}}{\mu }(\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}})$
Si on fait µ → ∞ on retrouve bien le résultat de la question II-2) puisqu'alors K = 0
Si on fait g(i2) ≡ 0 alors on retrouve le résultat de la question II-5), ce qui est satisfaisant.
II-7)Le coefficient K est très faible car le coefficient µ est très grand pour un ampli-op, cela veut dire que l'influence des arrondis sur le comportement réel vis à vis du comportement idéal des diodes est négligeable avec un montage à ampli-op.

III Fonctions à seuil à plusieurs cassures.
III-1) Le théorème de Millman donne immédiatement:
${V^ - } = {V^ + } = 0 = \frac{{\frac{{{V_{S1}}}}{{{R_1}}} + \frac{{{V_{S2}}}}{{{R_2}}} + \frac{{{V_S}}}{{{R_3}}}}}{{\frac{1}{{{R_1}}} + \frac{1}{{{R_2}}} + \frac{1}{{{R_3}}}}}$ soit ${V_S} = - {R_3}(\frac{{{V_{S1}}}}{{{R_1}}} + \frac{{{V_{{S_2}}}}}{{{R_2}}})$
III-2) Les diodes D1 et D2 sont montées têtes bêches deux cas sont à examiner:
Ier Cas: D1 est passante et D2 est bloquée. ⇔ VS1 = V- = 0 (D1 passante)
Alors en vertu du théorème de Millman si D2 est bloquée:
$\frac{{{V_1}}}{R} + \frac{E}{R} = {I_{D1}} > 0$ ⇒ E > -V1
2ème Cas: D1 est bloquée et D2 est passante. ⇔ conséquence sur le théorème de Millman
${V^ - } = 0{\rm{ }} \Rightarrow {\rm{ 0}} = \frac{{{V_1}}}{R} + \frac{{{V_{S1}}}}{R} + \frac{E}{R}$ ⇒ VS1 =-(E+V1) or VS1 < V- = 0 soit E < -V1
Les deux cas possibles de valeurs de E sont donc passés en revue.
III-3)
Cette fois les diodes D3 et D4 sont montées différemment.
On a: V- = V+ = 0
U3 +U4 =VS2 -V- = VS2
Aux bornes d'une diode idéale la tension ne peut être que nulle ou négative, il s'en suit que VS2 ne peut être que négatif ou nul.
Alors les courants I et I0 de la figure seront positifs ou nuls tous les deux
Ier Cas: D3 et D4 sont passantes. ⇔ U3 = U4 = 0 ⇒ VS2 = 0 et I = I0 = 0
${i_3} = - \frac{E}{R} + \frac{{{V_2}}}{R}{\rm{ > 0}}$ (D3 passante) donc il faut que E < V2
2eme Cas: D3 est bloquée - D4 est passante. ⇔ i3 = 0
et conséquence du théorème de Millman: ${{\rm{V}}^{\rm{ - }}} = 0{\rm{ }} \Rightarrow {\rm{ 0}} = \frac{{ - {V_2}}}{R} + \frac{{{V_{S2}}}}{R} + \frac{E}{R}$
VS2 = V2 -E la condition VS2 < 0 impose d'avoir E > V2
3eme Cas: D3 est passante - D4 est bloquée ⇔ i4 = I + I0 = 0 ⇒ I = I0 = 0 et VS2 est nul
${i_3} = - \frac{E}{R} + \frac{{{V_2}}}{R}{\rm{ > 0}}$ (D3 passante) donc il faut que E < V2
4eme Cas: D3 et D4 sont bloquées. ⇔ i4 = I + I0 = 0 ⇒ I = I0 = 0 et VS2 est nul
i3 = 0 (D3 bloquée) il faut que E = V2
Il y a donc deux situations: $\left\{ \begin{array}{l}E > {V_2}{\rm{ }} \Rightarrow {\rm{ }}{{\rm{V}}_{{\rm{S2}}}} = {V_2} - E\\E \le {V_2}{\rm{ }} \Rightarrow {\rm{ }}{{\rm{V}}_{{\rm{S2}}}} = 0\end{array} \right.$
III-4)On fait la synthèse des études précédentes sous forme d'un tableau:
E E < -V1 V1 < E < V2 E > V2
VS1 -(V1 + E) 0 0
VS2 0 0 (V2 - E)
${V_S} = - {R_3}(\frac{{{V_{S1}}}}{{{R_1}}} + \frac{{{V_{S2}}}}{{{R_2}}})$ $\frac{{{R_3}}}{{{R_1}}}({V_1} + E)$ 0 $ - \frac{{{R_3}}}{{{R_2}}}({V_2} - E)$
Ce qui se représente graphiquement par la caractéristique VS =f(E) ci-contre.
La caractéristique obtenue est celle d'une pseudo-diode Zener (cf figure 1) avec la correspondance des grandeurs:
(U,I) → (E,VS)
L'intérêt de ce montage est de réduire les défauts dûs aux arrondis.
III-5) La tension de sortie VS est indépendante du courant de sortie, on a donc en sortie une source de tension parfaite d'impédance de sortie ZS = 0
• • • • • • • • • • • • • •
DEUXIÈME PROBLÈME - MÉCANIQUE
I Étude préliminaire
I-1)
Dans un triangle équilatéral une rotation d'angle 2π/3 autour du point intersection des médianes (hauteur, médiatrices, etc..) laisse invariant le triangle et lui même. Il s'agit donc du centre d'inertie de la plaque homogène.
Sa position est: $AG = \frac{{2h}}{3}$
I-2)
Le moment d'inertie est ici un calcul d'intégrale double:
$I(Ax) = \int_0^h {dy\int_{ - y\tan (30^\circ )}^{y\tan (30^\circ )} {{y^2}.dx} } $
(en convenant que la masse surfacique est unitaire M≡S)
$I(Ax) = 2\int_0^h {dy\left[ {x{y^2}} \right]_0^{y\tan (30^\circ )}} = \frac{2}{{\sqrt 3 }}\left[ {\frac{{{y^4}}}{4}} \right]_0^h$
$I(Ax) = \frac{2}{{\sqrt 3 }}\left[ {\frac{{{h^4}}}{4}} \right]{\rm{ or M}} \equiv {\rm{S = }}\frac{{{{\rm{h}}^{\rm{2}}}}}{{\sqrt 3 }}$ donc $I(Ax) = \frac{{M{h^2}}}{2}$
A-N: I(Ax) = 2,5.10-3 kg.m2
I-3)Les trois côtés sont équivalents pour ce calcul. Donc J(AB) = J(BC). On peut utiliser deux fois le théorème de Huyghens pour calculer ce dernier.
$J(BC) = \left( {I(Ax) - M{{\left( {\frac{{2h}}{3}} \right)}^2}} \right) + M{(\frac{h}{3})^2}$
$J(AB) = \frac{{M{h^2}}}{6}$ A-N: J(AB) = 8,4.10-4 kg.m2
I-4)
Nous calculerons d'abord le moment d'inertie I(Az) puis par le théorème de Huyghens on obtiendra K(Gz).
$I(Az) = \int_0^h {dy\int_{ - y\tan (30^\circ )}^{y\tan (30^\circ )} {({x^2} + {y^2}).dx} } = 2\int_0^h {dy\left[ {\frac{{{x^3}}}{3} + x{y^2}} \right]} _0^{y\tan (30^\circ )}$ $I(Az) = 2\int_0^h {dy\left[ {\frac{{{y^3}}}{{9\sqrt 3 }} + \frac{{{y^3}}}{{\sqrt 3 }}} \right]} = \frac{{20}}{{9\sqrt 3 }}\left[ {\frac{{{y^4}}}{4}} \right]_0^h$
$Avec{\rm{ M}} \equiv {\rm{S = }}\frac{{{{\rm{h}}^{\rm{2}}}}}{{\sqrt 3 }}{\rm{ }} \Rightarrow {\rm{ }}I(Az) = \frac{{20M{h^2}}}{{36}}$ donc
${\rm{K}}(Gz) = I(Az) - M{(\frac{{2h}}{3})^2} = \frac{{20M{h^2}}}{{36}} - \frac{{4M{h^2}}}{9}$ ⇒ ${\rm{K}}(Gz) = \frac{{M{h^2}}}{9}$ A-N: K(Gz)= 5,6.10-4 kg.m2

II Rotation autour d'un côté du triangle
On a affaire à un pendule pesant se déplaçant sans frottement. Il y a conservation de l'énergie mécanique de la plaque. Compte tenu du sens d'orientation de l'axe vertical l'énergie s'écrit:
${E_m} = \frac{1}{2}{J_{AB}}{\dot \alpha ^2} - Mg{z_G} = \frac{{M{h^2}}}{{12}}{\dot \alpha ^2} - Mg\frac{h}{3}\cos \alpha = {C^{te}}$
D'où le résultat cherché ${\dot \alpha ^2} = \frac{{4g}}{h}\cos \alpha $
Le mouvement de G est circulaire, il y donc une accélération centripète et une accélération tangentielle. Au passage par la verticale l'accélération tangentielle est nulle puisque la vitesse est maximale. Il reste alors uniquement la composante centripète que l'on calcule pour α=0
${a_G} = \frac{h}{3}{\dot \alpha ^2} = \frac{{4g}}{3}$ A-N: aG = 13,1 m.s-2
III Mouvement de vissage
III-1)
L'angle θ de rotation du solide est représenté dans le plan de la plaque par l'angle entre GA' et GA. A' est l'intersection de la verticale A0z avec le plan de la plaque. On peut écrire:
$AA' = 2.\frac{{2h}}{3}\sin (\theta /2)$
Cette seconde figure représente la situation dans un plan vertical des points A, A0 et fait apparaître l'ascension du point A jusqu'en A' tel que A0A' = L - zG
La longueur constante du fil se traduit par:
${L^2} = {({z_G})^2} + {(AA')^2}$
${L^2} = z_G^2 + {[\frac{{4h}}{3}\sin (\theta /2)]^2}$
III-2)
D'après le théorème de König ${E_c} = \frac{1}{2}M\dot z_G^2 + \frac{1}{2}{K_{Gz}}{\dot \theta ^2} = \frac{1}{2}M\dot z_G^2 + \frac{{M{h^2}}}{{18}}{\dot \theta ^2}$

III-3)Dans l'hypothèse des petits mouvements on a θ voisin de 0 et zG voisin de L. La relation géométrique devient
${L^2} = z_G^2 + {[\frac{{4h}}{3}\sin (\theta /2)]^2}$ ⇒ ${L^2} = {(L - \varepsilon )^2} + \frac{{4{h^2}{\theta ^2}}}{9}$
Et en dérivant on obtient: $0 = - 2\dot \varepsilon (L - \varepsilon ) + \frac{{8{h^2}\dot \theta \theta }}{9} \approx - 2\dot \varepsilon L + \frac{{8{h^2}\dot \theta \theta }}{9}$
Tandis que la relation de définition de l'énergie cinétique devient:
${E_c} = \frac{1}{2}M{\dot \varepsilon ^2} + \frac{{M{h^2}}}{{18}}{\dot \theta ^2}$ soit en éliminant ε, ${E_c} = \frac{1}{2}M\left[ {\frac{{16{h^4}{{\dot \theta }^2}{\theta ^2}}}{{81{L^2}}} + \frac{{{h^2}{{\dot \theta }^2}}}{9}} \right] = \frac{{M{h^2}}}{{18}}{\dot \theta ^2}\left[ {1 + \frac{{16{h^2}{\theta ^2}}}{{9{L^2}}}} \right]$
Le terme en θ2 est négligeable et on a alors pratiquement ${E_c} = \frac{{M{h^2}}}{{18}}{\dot \theta ^2}$
L'énergie potentielle est Ep =-MgzG =-Mg(L-ε), on écrit alors la constance de l'énergie mécanique:
${E_m} = - Mg(L - \varepsilon ) + \frac{{M{h^2}}}{{18}}{\dot \theta ^2} = {C^{te}}$ par dérivation ⇒ $\frac{{d{E_m}}}{{dt}} = Mg\dot \varepsilon + \frac{{M{h^2}}}{{18}}2\dot \theta \ddot \theta = 0$
Il reste encore à remplacer ε
$Mg\frac{{4{h^2}\dot \theta \theta }}{{9L}} + \frac{{M{h^2}}}{{18}}2\dot \theta \ddot \theta = 0{\rm{ }}$ l'équation des petits mouvements est ${\rm{ }}\ddot \theta {\rm{ + }}\frac{{{\rm{4g}}}}{{\rm{L}}}\theta = 0$
Il s'agit de mouvements sinusoïdaux de période: $T = 2\pi \sqrt {\frac{L}{{4g}}} $ A-N: T= 316 ms
• • • • • • • • • • • • • •

Concours Physique EIVP P' 1994 (Corrigé)

I.V.P. 1994 option P' Freinage d'une navette par l'atmosphère
Interaction entre deux spires.
1 Préliminaire
$p = \mu \frac{{RT}}{M}$ atmosphère en équilibre isotherme $ \Rightarrow \mu * \vec g = gra\vec d\left( p \right)$
$\frac{\partial p}{\partial z}=-\text{ }\mu *g\text{ }\xrightarrow{{}}\text{ }\frac{\partial \mu }{\partial z}=-\text{ }\mu \cdot g\frac{M}{RT}$ $\mu = {\mu _S} \cdot \exp \left( { - {\rm{ }}\frac{{Mgz}}{{RT}}} \right) = {\mu _S}\exp \left( { - {\rm{ }}\frac{z}{d}} \right)$
$d = \frac{{RT}}{{Mg}} = {\rm{ }}8000m{\rm{ }} \Rightarrow {\rm{ }}$$T = 279{\rm{ }}K$
2 Freinage vertical $\frac{dv}{d\mu }\text{ + }\frac{{{\text{C}}_{\text{1}}}\cdot d}{m}\cdot v\text{ = 0}$
2.1. $\frac{{dv}}{{dt}} = {\rm{ - }}\mu \cdot \frac{{{{\rm{C}}_{\rm{1}}}}}{{\rm{m}}} \cdot v{{\rm{ }}^2}{\rm{ = }}\frac{{{\rm{dv}}}}{{{\rm{d}}\mu }} \cdot \frac{{d\mu }}{{dh}} \cdot \frac{{dh}}{{dt}}$
avec $\frac{{dh}}{{dt}}{\rm{ }} = {\rm{ }} - v{\rm{ ; et }}\frac{{{\rm{d}}\mu }}{{{\rm{dh}}}}{\rm{ = - }}\frac{\mu }{{\rm{h}}}$
2.2 dv/v = -(C1 .d/m).dµ Ln(v/v0) = C1 .d/m.(µ0-µ) $v{\rm{ = }}{{\rm{v}}_{\rm{0}}} \cdot \exp \left( {\frac{{d.{C_1}}}{m} \cdot ({\mu _0} - \mu )} \right)$

2.3 A l'altitude h0 la masse volumique est très faible (µ0 = 4,8.10-6) et le freinage très peu efficace; dans le cadre de ce modèle très grossier la vitesse à l'arrivée au sol est très faible: v= v0* exp(-20,8) = 7,4 .10-6 m/s
bien, sur la force de freinage, qui varie comme le carré cette vitesse, n'est plus efficace; qualitativement on voit que l'efficacité du freinage passe par un maximum; il resterait à définir quantitativement cette " efficacité".
2.4 δ = -dv/dt = µ(h).C1 /m.V2 = .C1 /m.V02 µ.exp{ 2.C1 (d./m).(µ0-µ)}
il y aurait un maximum de décélération là où d δ /dµ. = 0 = [1 - µ. 2.C1 d./m.]* δ /µ
soit quand ${\mu _M}{\rm{ = }}\frac{{\rm{m}}}{{{\rm{2}} \cdot {\rm{d}} \cdot {{\rm{C}}_{\rm{1}}}}}{\rm{ }} = {\rm{ }}\frac{{{\rm{5}}{\rm{.1}}{{\rm{0}}^{\rm{3}}}}}{{{{8.10}^3}.2.10}}{\rm{ = }}\frac{{\rm{1}}}{{{\rm{32}}}}kg/{m^3}$
ce qui correspond à une altitude ${h_M}{\rm{ = d}} \cdot {\rm{Ln(}}\frac{{{\mu _{\rm{S}}}}}{{{\mu _{\rm{M}}}}}){\rm{ = 8000}}{\rm{.Ln42 = 29}}{\rm{,9km}}$
la décélération serait $\delta _M^{}{\rm{ = }}\mu _M^{} \cdot \frac{{{C_1}}}{m} \cdot V_0^2 \cdot \frac{1}{e}{\rm{ = }}\frac{{\rm{1}}}{{\rm{e}}} \cdot \frac{{V_0^2}}{{2.d}}{\rm{ = 1470 m}} \cdot {{\rm{s}}^{{\rm{ - 2}}}}$
soit, dans le cadre de ce modèle, environ 150 fois G.
2.5 Si l'on réintroduit l'attraction terrestre son effet est notable au départ car µ est faible, la vitesse va donc augmenter; on peut majorer cette augmentation en évaluant la vitesse de la navette au sol s'il n'y avait pas d'atmosphère(v '= (64.106+10.105)½ =8,06 km/s
Sous l'action de la gravitation la navette atteindrait une vitesse limite ${V_l}{\rm{ = }}\sqrt {\frac{{{\rm{m}}{\rm{.G}}}}{{\mu .{C_1}}}} $ qui correspond en h=0, où µ = 1,3kg/m3, à Vl = 62 m/s. Dans le cadre du modèle où l' on néglige la gravitation cette vitesse de 62m/s correspond à une altitude calculable par les relations du § 2.2 : µ(h) =m /.(C1 d.).Ln(8000/62) = 0,30 kg/m3, on aurait cette masse volumique donc cette vitesse(62 m/s) en h= d.Ln(1,3/0,3) soit en h = 11,6 km ,(13,2km en tenant compte de µ(h)), altitude nettement inférieure à celle (environ 30 km) où l' on prévoyait une décélération maximale de 150* G, qu'il ne faut pas faire subir à d'hypothétiques passagers. L'allure générale de la courbe v=f(h), et ses conséquences, sont donc peu modifiées.

3 Freinage sur une spirale
3.1 On projette sur la tangente à la trajectoire la relation fondamentale en "oubliant" là encore le terme de gravitation lié à la terre(m.G.cosα) : $\frac{{dv}}{{dt}} = {\rm{ - }}\mu \cdot \frac{{{{\rm{C}}_{\rm{1}}}}}{{\rm{m}}} \cdot v{{\rm{ }}^2}{\rm{ = }}\frac{{{\rm{dv}}}}{{{\rm{d}}\mu }} \cdot \frac{{d\mu }}{{dh}} \cdot \frac{{dh}}{{dt}}$
relation inchangée, mais avec dh /dt = - Vcosα $\frac{{dv}}{{d\mu }}{\rm{ + }}\frac{{{{\rm{C}}_{\rm{1}}} \cdot d}}{{m.\cos \alpha }} \cdot v{\rm{ = 0}}$
3.2 Le freinage sur l'air raréfiée de la très haute atmosphère provoque une perte lente d'énergie mécanique pour un satellite, même en orbite circulaire (α=π / 2) et donc une lente diminution de l'altitude. Ce phénomène n'est pas pris en compte ici. Donc si α=π / 2 il n'y a pratiquement pas freinage et si α=0 la rentrée est la plus "brutale".
3.3 On observera le maximum de décélération pour d δ /dµ.=[1 - µ. 2.C1 d./m.cosα.].( δ /µ)
La décélération maximale sera $\Delta _{M}^{'}=\mu _{M}^{'}.\frac{{{C}_{t}}}{m}.V_{0}^{2}.\frac{1}{e}=\frac{\cos \alpha }{e}.\frac{V_{0}^{2}}{2.d}=1470.\cos \alpha $ pour qu'elle soit inférieure à 10.G il faudra cosα < 1 / 14,7 soit π / 2 > α > π / 2 - 0,068
La longueur L de la trajectoire parcourue par la navette sera : $L{\rm{ = }}\int_{{\rm{t = 0}}}^{{{\rm{t}}_{\rm{F}}}} {{\rm{v}}{\rm{.dt}}} {\rm{ = }}\int_{{\rm{t = 0}}}^{{{\rm{t}}_{\rm{F}}}} {\frac{{{\rm{dh}}}}{{{\rm{dt}}}} \cdot \frac{{\rm{1}}}{{{\rm{cos}}\alpha }}{\rm{dt}}} {\rm{ = 14}}{\rm{,7}}{\rm{.}}{{\rm{h}}_{\rm{0}}}{\rm{ = 1470 km}}$
3.4 On néglige, lors de la descente de la navette, la perte d'énergie potentielle gravitationnelle devant la perte d'énergie cinétique 64 fois plus importante:-ΔEc =1/2.m.v²=1,6.1011 joules
Pour dissiper cette énergie on songe à la vaporisation d'une céramique; il en faudrait:
$ - \Delta {E_c}{\rm{ = }}\left( {{{\rm{I}}_{{\rm{Fus}}}} + {I_{vap}}} \right) \cdot {{\rm{m}}_{{\rm{ceram}}}}{\rm{ Soit }}{{\rm{m}}_{{\rm{ceram}}}}{\rm{ = }}\frac{{{\rm{1}}{\rm{,6}}{\rm{.1}}{{\rm{0}}^{{\rm{11}}}}}}{{{{10}^7}}}{\rm{ = 16 tonnes }}$
Cette valeur est bien sur incohérente avec la valeur, 5 tonnes, de la masse de la navette; on peut penser qu'il y a en plus évacuation de la chaleur par convection et surtout par rayonnement, l'importance de ces facteurs augmente.si la durée du vol spirale croît(α→π / 2)
Pb 2 : INTERACTION ENTRE DEUX SPIRES
1 Etude des phénomènes électromagnétiques
1.1 ${B_z}{\rm{ = }}\frac{{{\mu _{\rm{0}}}{I_1}}}{{2a}}{\left( {1 + \frac{{{a^2}}}{{{z^2}}}} \right)^{ - \frac{3}{2}}} \cong {\rm{ }}\frac{{{\mu _{\rm{0}}}{I_1}{a^2}}}{{2{z^3}}}$
1.2 L'Inductance mutuelle M entre les deux spires:
$M{\rm{ = }}\frac{{{\Phi _{{\rm{12}}}}}}{{{{\rm{I}}_{\rm{1}}}}}{\rm{ }} \cong {\rm{ }}\frac{{{\mu _{\rm{0}}}\pi {a^4}}}{{2{z^3}}}{\rm{ }}$ et${I_{2{\rm{ }}}}{\rm{ = - }}\frac{{\rm{1}}}{{\rm{R}}}\frac{{d{\Phi _{12}}}}{{dt}}{\rm{ = }}\frac{{\rm{1}}}{{\rm{R}}}\frac{{3{\mu _0}\pi {a^4}}}{{2{z^4}}}{I_1}\left( {\frac{{dz}}{{dt}}} \right)$
M≠0 alors que L1 et L2 sont nulles peut surprendre. On peut espérer qu'un candidat s'en étonnant et invoquant L2.L1 ≥ M2 aura été fortement récompensé !
1.3 . a
1°) Symétrie de révolution autour de oz ⇒ $\vec B{\rm{ }}$ indépendant de θ
2°) Le plan $M,{\vec u_r},{\vec u_\theta }$ est plan de "symétrie négative" ⇒ $\vec B{\rm{ (M) }} \in {\rm{ au plan }}M,{\vec u_r},{\vec u_\theta }$
1.3 . b $2\pi .r.dz.{B_r} + \pi .{r^2}.\frac{{\partial {B_z}}}{{\partial z}}.dz{\rm{ = 0}}$${B_r}{\rm{ = - }}\frac{{\rm{a}}}{{\rm{2}}}\frac{{\partial {B_z}}}{{\partial z}}{\rm{ = }}\frac{{\rm{a}}}{{\rm{2}}} \cdot \frac{{3{\mu _0}\pi {a^2}{I_1}}}{{2{z^4}}}$
1 3 . c $\vec F{\rm{ = }}\oint {{{\rm{I}}_{\rm{2}}}.d\vec l \wedge \vec B} {\rm{ = - }}{{\rm{\vec u}}_{\rm{z}}}.2\pi a.{B_r}$
${F_z}{\rm{ = - }}\left( {\frac{{\rm{a}}}{{\rm{2}}} \cdot \frac{{3{\mu _0}\pi {a^2}{I_1}}}{{2{z^4}}}} \right)\frac{{\left( {2\pi a} \right)}}{{\rm{R}}}\frac{{3{\mu _0}\pi {a^4}{I_1}}}{{2{z^4}}}\left( {\frac{{dz}}{{dt}}} \right){\rm{ = - }}\frac{{\rm{1}}}{{{\rm{R}}{\rm{.}}{{\rm{z}}^{\rm{8}}}}}{\left( {\frac{{3{\mu _0}\pi {a^4}}}{2}} \right)^2}\frac{{dz}}{{dt}}$
prend la forme demandée avec $k{\rm{ = }}\frac{{\rm{1}}}{{{\rm{2}}{\rm{.m}}{\rm{.R}}}} \cdot {\left( {3{\mu _0}\pi {a^4}I} \right)^2}$ Bien sur $\vec F{{\rm{ }}_{{\rm{12}}}}{\rm{ = - }}\vec F{{\rm{ }}_{{\rm{21}}}}$

2 Etude des mouvements des spires
2.1 $\begin{array}{l}\\\frac{{{d^2}{z_1}}}{{d{t^2}}} + \frac{{{d^2}{z_2}}}{{d{t^2}}}{\rm{ = 0 ; }}\frac{{{{\rm{d}}^{\rm{2}}}{z_2}}}{{d{t^2}}}{\rm{ = - }}\frac{{\rm{k}}}{{{\rm{2}}{\rm{.}}{{\rm{z}}^{\rm{8}}}}} \cdot \frac{{dz}}{{dt}}{\rm{ = - }}\frac{{{{\rm{d}}^{\rm{2}}}{z_1}}}{{d{t^2}}}{\rm{ = }}\mathop {\frac{1}{2}}\limits^{..} \frac{{{d^2}z}}{{d{t^2}}}\end{array}$
et $\frac{{dz}}{{dt}}{\rm{ = }}\frac{{\rm{k}}}{{{\rm{7}}{\rm{.}}{{\rm{z}}^{\rm{7}}}}}{\rm{ + C = }}\frac{{\rm{k}}}{{{\rm{7}}{\rm{.z}}_{\rm{0}}^{\rm{7}}}}\left( {\frac{{{\rm{z}}_{\rm{0}}^{\rm{7}}}}{{{{\rm{z}}^{\rm{7}}}}}{\rm{ - }}1} \right){\rm{ + }}{{\rm{v}}_{\rm{0}}}{\rm{ = g(z) }}$
2.2. a d²z /dt² est négatif à la date t = 0, puisque v0 > 0; mais selon la valeur de v0 et surtout du signe de (7.v0.z07-k ), deux cas sont possibles; dans le premier g(z→∝)>0
alors(7.v0.z07-k)>o,
pour g(z→∝)>0 :
Le régime permanent lorsque t→ ∝ est un mouvement uniforme à la vitesse ${v_\infty }{\rm{ = }}{{\rm{v}}_{\rm{0}}}{\rm{ }} - {\rm{ }}\frac{k}{{7.z_0^7}}$ ; les spires s'écartent indéfiniment.
2.2 . b Si maintenant g(z→∝) < 0, c'est à dire qu'alors (7.v0.z07-k) < 0, la vitesse d'éloignement, s'annule pour une valeur finie de z; c'est le point F du graphe inférieur. Les spires s'immobilisent et comme on a toujours $\mathop {\rm{z}}\limits^{ \bullet {\rm{ }} \bullet } \cdot \mathop {\rm{z}}\limits^ \bullet {\rm{ }} \le {\rm{ 0}}$, le mouvement, ne peut reprendre.
2.2 . c La courbe intermédiaire du graphe est bien la courbe séparatrice du diagramme des phases.
2.3 D'un point de vue énergétique on peut écrire que la variation de la somme de l'énergie magnétostatique et de l'énergie cinétique deux spires est égale à la somme des énergies reçues de l'extérieur c'est à dire ici au travail du générateur qui maintient le courant ${I_1}$ constant et la chaleur " reçue"de l'extérieur , algébriquement négative, contrepartie de l'effet joule. On peut aussi écrire le théorème de l'énergie cinétique: c'est à dire: variation de l'énergie cinétique des deux spires égale au travail de toutes les forces, ici les forces de Laplace sur les deux spires. Il reste une difficulté relative à l'état initial de la seconde bobine- (à t = o, il est possible de considérer ${{\rm{I}}_{\rm{2}}}$ = 0, il faudra alors un L faible mais non nul, ou ${{\rm{I}}_{\rm{2}}}$ ≠ 0, cela à quelques répercutions sur le bilan;

A noter que $\int {d(M.{I_1}.{I_2}} ){\rm{ = }}{I_1}.\Delta (M.{I_2}) = - M.{I_1}.{I_{{2_0}}} = - {\rm{ }}\frac{{7m.v_0^2}}{{12}}$, n'est pas négligeable)
si 7.v0.z07 = 2k les spires s'éloignent indéfiniment (§ 2.2.a) et dz/dt= (v0/2).(1+ z07 /z7)
Travail des forces de Laplace:
${W_L}{\rm{ = - }}\int\limits_{{\rm{z = }}{{\rm{z}}_{\rm{0}}}}^\infty {\frac{{{\rm{k}}{\rm{.m}}}}{{\rm{2}}} \cdot \frac{1}{{{z^8}}}} \cdot \frac{{{\rm{dz}}}}{{{\rm{dt}}}} \cdot {\rm{dz = - (m}}{\rm{.}}{{\rm{v}}_{\rm{0}}} \cdot \frac{{\rm{7}}}{{\rm{4}}}{\rm{)}} \cdot \frac{{{{\rm{v}}_{\rm{0}}}}}{{\rm{2}}}\int\limits_{{\rm{u = 1}}}^\infty {\left( {{{\rm{u}}^{{\rm{ - 15}}}}{\rm{ + }}{{\rm{u}}^{ - 8}}} \right)} {\rm{ du = }}\underline {{\rm{ - }}\frac{{\rm{3}}}{{{\rm{16}}}} \cdot {\rm{mv}}_{\rm{0}}^2} {\rm{ }}$
énergie joule:
${W_J}{\rm{ = }}\int\limits_{t = 0}^\infty {{\rm{R}}{\rm{.}}{{\rm{I}}_{\rm{2}}}{{(t)}^2}} {\rm{.dt = }}\int {{\rm{R}}{\rm{.}}} {\left( {\frac{{\rm{1}}}{{\rm{R}}}\frac{{3{\mu _0}\pi {a^4}}}{{2{z^4}}}{I_1}\left( {\frac{{dz}}{{dt}}} \right)} \right)^{\rm{2}}}{\rm{dt = }}\int {\frac{{{\rm{k}}{\rm{.m}}}}{{{\rm{2}}{\rm{.}}{{\rm{z}}^{\rm{8}}}}}{{\left( {\frac{{dz}}{{dt}}} \right)}^2} \cdot } {\rm{ dt = - }}{{\rm{W}}_{\rm{L}}}$
variation d'énergie cinétique:
${E_{{c_{initiale}}}}{\rm{ = 2}}{\rm{.}}\left( {\frac{{\rm{m}}}{{\rm{2}}} \cdot {{(\frac{{v_0^{}}}{2})}^2}} \right){\rm{ = }}\frac{{{\rm{m}}{\rm{.v}}_{\rm{0}}^{\rm{2}}}}{{\rm{4}}}{\rm{ ; }}{{\rm{E}}_{{c_{finale}}}}{\rm{ = 2}}{\rm{.}}\left( {\frac{{\rm{m}}}{{\rm{2}}} \cdot {{(\frac{{v_0^{}}}{4})}^2}} \right){\rm{ = }}\frac{{{\rm{m}}{\rm{.v}}_{\rm{0}}^{\rm{2}}}}{{{\rm{16}}}}{\rm{ }} \Rightarrow {\rm{ }}\underline {\Delta {{\rm{E}}_{{\rm{c }}}}{\rm{ = }}\frac{{{\rm{3}}{\rm{.m}}{\rm{.v}}_{\rm{0}}^{\rm{2}}}}{{{\rm{16}}}}} $

Concours Physique Centrale-Supélec (M, P') 1993 (Énoncé)

Centrale–Supélec, M, P’, 1993 (Physique I)
Énoncé
Ce problème comporte trois parties dont certaines questions peuvent être abordées de façon indépendante. La première partie abordera la propagation d’une onde de courant dans une ligne électrique, la deuxième précisera la structure du champ électromagnétique dans la ligne et la troisième traitera de la transmission d’une onde électromagnétique par une lame conductrice. Les données numériques sont regroupées en fin d’énoncé; on posera \(j^2 = -1\).

Onde de courant dans une ligne électrique

Une ligne électrique sans pertes est caractérisée par son coefficient d’inductance propre linéique et sa capacité linéique, respectivement notées \(L\) et \(C\). À l’abscisse \(x\) et à l’instant \(t\), on désigne par \(i(x,t)\) l’intensité du courant dans la ligne et par \(u(x,t)\) la tension entre les deux conducteurs de la ligne (cf. fig. [fig1]).
  1. Établir les deux équations différentielles liant \(i(x,t)\) et \(u(x,t)\).
  2. [I2] On cherche une solution de ces équations représentant une onde de courant de la forme \(i(x,t) = I(x) \exp \left(j \omega t\right)\) en notation complexe. Déterminer, dans ce cas, la forme la plus générale de \(i(x,t)\) et \(u(x,t)\). Exprimer en fonction des caractéristiques de la ligne la vitesse de phase \(v_\varphi\) de cette onde.
  3. La ligne, située dans l’espace \(x < 0\), s’étend jusqu’en \(x = 0\) où elle est fermée sur l’impédance \(Z_0\) (cf. fig. [fig2]). Montrer qu’il existe une valeur \(Z_c\) de \(Z_0\), appelée impédance caractéristique de la ligne telle que le rapport \(u/i\) devienne indépendant de \(x\). On exprimera \(Z_c\) en fonction de \(L\) et \(C\) et on précisera la forme de l’onde dans la ligne. Exprimer dans ce cas la puissance moyenne transportée par l’onde à l’abscisse \(x\). Que se passe-t-il physiquement en \(x = 0\)?
  4. La ligne s’étend maintenant jusqu’à \(x = + \infty\) mais on branche encore l’impédance \(Z_0 = Z_c\) en parallèle sur la ligne à l’abscisse \(x = 0\) (cf. fig. [fig3]). On s’intéresse à l’onde de courant dans la partie \(x < 0\) de la ligne.
    1. Montrer que cette onde voit en \(x = 0\) une impédance équivalente \(Z_1\) qui s’exprime très simplement en fonction de \(Z_c\).
    2. Définir et calculer le module \(r\) du coefficient de réflexion (en courant ou en tension) de l’onde en \(x = 0\).
  5. On place enfin sur la ligne précédente un court-circuit en parallèle à l’abscisse \(x = \ell\) (cf. fig. [fig4]).
    1. Quelle est la forme nécessaire de l’onde de courant entre les abscisses \(x=0\) et \(x=\ell\)?
    2. Montrer qu’il existe une valeur minimale \(\ell_0\) de \(\ell\) telle que le courant dans la partie positive de la ligne s’annule en \(x=0\). On exprimera \(\ell_0\) en fonction de la longueur d’onde \(\lambda\) de l’onde de courant dans la ligne. En déduire alors le coefficient de réflexion et la forme de l’onde dans la partie négative de la ligne.

Champ électromagnétique dans la ligne

La ligne précédente est constituée de deux rubans conducteurs parfaits, de faible épaisseur, de largeur \(a\), distants de \(b\), l’espace entre les rubans étant vide (cf. fig. [fig5]). Les rubans sont parcourus par des courants de densités surfaciques \(\vec j_s = j_s(x,t) \vec e_x\) et \(- \vec j_s\) et présentent entre leurs faces des densités surfaciques de charge \(\sigma(x,t)\) et \(- \sigma(x,t)\).
On étudie les champs \(\vec E\) et \(\vec B\) uniquement dans l’espace situé entre les rubans et on suppose que ces champs ne dépendent que l’abscisse \(x\) du point considéré et de l’instant \(t\). On néglige donc tout effet de bord.
  1. Exprimer, en fonction des constantes électromagnétiques du vide \(\varepsilon_0\) et \(\mu_0\) et des densités \(j_s\) et \(\sigma\) les champs \(\vec E(x,t)\) et \(\vec B(x,t)\) dans l’espace vide entre les rubans.
    On considère à nouveau dans toute la suite de cette partie [PartieII] une onde de courant dans la ligne, d’intensité de la forme \(i(x,t) = I \exp \left[j \left(\omega t - k x\right)\right]\) en notation complexe, où \(k\) est une constante positive et \(I\) une constante réelle.
  2. [II2] À partir des équations de Maxwell, exprimer deux relations liant \(\sigma(x,t)\) et \(i(x,t)\). En déduire la vitesse de phase \(v_\varphi\) de l’onde et montrer que la structure du champ électromagnétique est celle d’une onde plane dans le vide illimité.
  3. Déterminer l’énergie magnétique \({\mathrm{d}}\epsilon_B\) d’une tranche d’épaisseur \({\mathrm{d}}x\) de la ligne. En déduire le coefficient d’inductance propre \(L\) de la ligne.
  4. Déterminer l’énergie \({\mathrm{d}}\epsilon_E\) associée au champ électrique \(\vec E\) de la même tranche d’épaisseur \({\mathrm{d}}x\). En déduire la capacité linéique \(C\) de la ligne.
  5. Déduire des résultats précédents l’accord entre les questions [I2] et [II2] du problème quant à la vitesse de phase \(v_\varphi\).
  6. Exprimer le champ \(\vec E\) en fonction des dimensions de la ligne et de la tension \(u(x,t)\) entre les rubans. Peut-on écrire une relation de la forme \(\vec E = - {\overrightarrow{\mathrm{grad}}\,}V\) dans l’espace vide entre les rubans?
    On désire fermer la ligne sur son impédance \(Z_c\) en introduisant, entre les rubans, à l’abscisse \(x = 0\), une plaque conductrice de résistivité \(\varrho\), d’épaisseur \(e\), de largeur \(a\) et de longueur \(b\) (cf. fig. [fig6]).
  7. On considérera dans cette question que l’épaisseur \(e\) est suffisamment faible pour que l’on puisse admettre que le courant traversant la plaque soit réparti de manière uniforme.
    1. Déterminer \(Z_c\) en fonction de \(\varrho\), \(e\), \(a\) et \(b\). Montrer que la résistance \(R_c\) d’un carré de la plaque, de côté quelconque, s’exprime en fonction des seules constantes \(\varepsilon_0\) et \(\mu_0\). On appellera impédance adaptée au vide cette grandeur \(R_c\) dont on donnera la valeur numérique.
    2. On veut réaliser cette plaque avec:
      • du cuivre de résistivité \(\varrho = {1,7\cdot 10^{-8}}{\,\Omega\cdot\mathrm{m}}\);
      • du carbone de résistivité \(\varrho = {3,5\cdot 10^{-3}}{\,\Omega\cdot\mathrm{m}}\).
      Quel devrait être, dans chaque cas, l’épaisseur \(e\) de la plaque? Commenter.
  8. Déterminer le vecteur de Poynting associé à l’onde électromagnétique entre les rubans. Quelle est la puissance moyenne transportée par l’onde? Que se passe-t-il quand l’onde arrive en \(x = 0\), la ligne étant fermée par la plaque d’impédance \(Z_c\)?

Réflexion sur une plaque conductrice

On considère à présent une onde électromagnétique plane dans le vide illimité, de pulsation \(\omega\) qui a des caractéristiques identiques à celles étudiées dans la partie [PartieII]. On écrira les champs de cette onde:
\[\vec E_i = E_0 \exp \left[j \omega\left(t - \frac{x}{c}\right)\right] \vec e_y \hspace{2em} \vec B_i = \frac{E_0}{c} \exp \left[j \omega\left(t - \frac{x}{c}\right)\right] \vec e_z\]
\(c\) est la vitesse de la lumière dans le vide. À l’abscisse \(x = 0\) (cf. fig. [fig7]) on place une plaque conductrice plane infinie, orthogonale à \(\vec e_x\), de constantes électromagnétiques égales à celles du vide \(\varepsilon_0\) et \(\mu_0\), d’épaisseur \(e\) et de résistivité \(\varrho\) identiques à celles calculées dans la partie précédente: un carré de côté quelconque de la plaque a donc une résistance \(R_c\) adaptée au vide.
  1. Expliquer qualitativement pourquoi il existera pourtant une onde réfléchie sur la plaque. En vous inspirant des résultats précédents et en argumentant votre réponse, pouvez-vous indique sans calculs quel sera le module \(r\) du coefficient de réflexion de cette onde sur la plaque?
    On se propose de retrouver ce résultat directement à partir de l’étude des ondes dans le vide et la plaque. Pour ce faire, on rappelle que, moyennant l’approximation \(\varrho\varepsilon_0\omega \ll 1\) supposée ici vérifiée, le champ électrique dans la plaque conductrice est de la forme:
    \[\vec E_\varrho = \left\{A_1 \exp \left(- \frac{x}{\delta}\right) \exp \left[j \left(\omega t - \frac{x}{\delta}\right)\right] + A_2 \exp \left(\frac{x}{\delta}\right) \exp \left[j \left(\omega t + \frac{x}{\delta}\right)\right] \right\} \vec e_y\]
    \(A_1\) et \(A_2\) sont des constantes déterminées par les conditions aux limites de la plaque et \(\delta\) une distance caractéristique du conducteur et de l’onde, appelée profondeur de peau, et qui vaut \(\displaystyle \delta = \sqrt{\frac{2\varrho}{\mu_0\omega}}\).
  2. Expliquer d’où provient l’approximation indiquée et préciser le champ magnétique \(\vec B_\varrho\) associé dans la plaque. Justifier l’expression de \(\delta\).
    \(\left(\vec E_i, \vec B_i\right)\) étant l’onde incidente arrivant sur la plaque et \(\left(\vec E_\varrho, \vec B_\varrho\right)\) l’onde se propageant dans la plaque, on désigne par \(\left(\vec E_r, \vec B_r\right)\) l’onde réfléchie sur la plaque et \(\left(\vec E_t, \vec B_t\right)\) l’onde transmise dans l’espace \(x > e\).
    On écrira \(\vec E_r\) et \(\vec E_t\) sous la forme:
    \[\vec E_r = \alpha E_0 \exp \left[j \omega\left(t + \frac{x}{c}\right)\right] \vec e_y \hspace{2em} \vec E_t = \tau E_0 \exp \left[j \omega\left(t - \frac{x}{c}\right)\right] \vec e_y\]
  3. Déterminer quatre relations liant \(\alpha\), \(\tau\), \(A_1\) et \(A_2\).
  4. Montrer que l’approximation précédente implique également qu’on ait \(e \ll \delta\). En déduire, après simplifications des relations, la valeur de \(\alpha\).
  5. Que faudrait-il placer, et à quel endroit, pour annuler l’onde réfléchie? On pourra d’abord répondre qualitativement en s’appuyant sur des résultats précédents et démontrer ensuite le résultat recherché.
Formulaire et données numériques:
Formule d’analyse vectorielle \({\overrightarrow{\mathrm{rot}}\,}{\overrightarrow{\mathrm{rot}}\,}\vec u = {\overrightarrow{\mathrm{grad}}\,}{\mathrm{div}\,}\vec u - \Delta \vec u\)
Célérité de la lumière dans le vide \(c = {3,00\cdot 10^{8}}{\,\mathrm{m}\cdot\mathrm{s}^{-1}}\)
Perméabilité magnétique du vide \(\mu_0 = {4\cdot\pi\cdot 10^{-7}}{\,\mathrm{H}\cdot\mathrm{m}^{-1}}\)

Concours Physique ENSI 1993 (Énoncé)

Étude d'un cyclotron dans l'approximation non relativiste, diffusion p‑p.
Ce problème est à traiter intégralement dans l'approximation Non Relativiste. I ‑ Un cyclotron accélérant des protons est constitué d'un électro‑aimant à pôles plans dans l'entrefer duquel règne un vide poussé (figure 1). La région de l'espace contenant les trajectoires des protons, ou volume d'accélération, est un cylindre dont les faces sont parallèles aux plans des pôles. Le champ magnétique B0 y est uniforme, permanent et perpendiculaire aux faces planes du cylindre. Les parois du cylindre sont matérialisées par deux électrodes conductrices creuses, en cuivre, appelées dés. Ces dés sont séparés par une région d'épaisseur g faible, s'étendant de part et d'autre d'un plan contenant l'axe du cylindre. Les faces en regard des dés sont parallèles ; l'intersection de l'axe du cylindre avec le plan médian des dés est considérée comme le centre du cyclotron. Un dispositif, appelé source, produit des protons qui sont injectés au centre avec une énergie cinétique négligeable. Un générateur permet d'appliquer entre les dés une tension alternative à haute fréquence ${u_c} = {U_c}\sin \left( {\omega t + \Phi } \right)$créant entre les dés un champ électrique uniforme $\vec \varepsilon $ tel que ${u_c} = \varepsilon g$.

Dans les dés les protons décrivent donc des trajectoires qui sont successivement des demi cercles (figure 1). La fréquence ${\nu _c} = \frac{\omega }{{2\pi }}$du champ électrique $\vec \varepsilon $ est choisie de telle sorte que, pendant qu'un proton décrit sensiblement un demi cercle dans un dé, la phase du champ électrique augmente de π. Ainsi, les protons ayant la phase convenable sont accélérés à chaque passage dans l'espace inter dés. On admettra que les protons sont accélérés une première fois sur la distance g avant de décrire le premier demi cercle.
1) Sachant que la masse du proton est mp, sa charge e, calculer la fréquence ${\nu _c}$du champ électrique $\vec \varepsilon $.
A.N. : mp = 1,6.10 ‑ 27 kg, e = 1,6.10 -19 Coulomb, Bo = 1,5 Tesla
2) En négligeant l'épaisseur g de l'espace accélérateur (entre dés) calculer le rayon rn du nième demi cercle décrit par les protons. On suppose qu'à la sortie de la source, ils traversent l'espace accélérateur lorsque ${u_c} = {U_c}$
A.N. : Uc = 50 kV, n = 400
3) En réalité les protons traversent le plan médiateur de l'espace accélérateur à un instant tc tel que $\omega .{t_c} = 0$à Kπ près et avec une phase Φ0. Cet espace a une largeur g de l'ordre de 1 cm et il est nécessaire de tenir compte au cours de sa traversée de la variation du champ accélérateur (figure 1).
a) Montrer que le gain en énergie pour une orbite située à une distance r du centre du cyclotron est $w = e\,\,{U_c}\left[ {\frac{{\sin \left( {g/2r} \right)}}{{\left( {g/2r} \right)}}} \right]\sin {\Phi _0}$ en admettant que dans l'espace accélérateur ($ - \frac{g}{2} \le x \le \frac{g}{2}$) on peut écrire x = v t ou v est la vitesse des protons (v = ωr) sensiblement constante dans l'intervalle g, (g < r).
b) Quelle valeur s'efforcera‑t‑on d'obtenir pour Φ0 ?
c) En faisant les approximations convenables, calculer l'énergie cinétique W obtenue à la sortie du cyclotron, c'est‑à‑dire après la nième demi orbite avec la valeur de Φ0 obtenue en 3)b. On l'exprimera en joules et en MeV (Mega électron Volts). On montrera que l'approximation non relativiste est acceptable.
d) Les protons arrivent à la sortie par paquets séparés les uns des autres par le même intervalle de temps, alors que l'injection se fait de façon continue au centre de l'accélérateur.
Expliquer l'origine de ces paquets.
Calculer l'intervalle de temps séparant deux paquets de protons.
A.N. : Uc = 50 kV, n = 400

4) En pratique, les protons sont injectés dans le cyclotron avec une phase comprise dans l'intervalle${\Phi _0} \pm \Delta \Phi $ avec $\Delta \Phi = \pm 1,5^\circ $. Il en résulte une fluctuation en énergie ΔW.
a) Calculer la résolution en énergie $\frac{{\Delta W}}{W}$du faisceau sortant pour n fixé.
b) En déduire la variation relative de rayon $\frac{{\Delta {r_n}}}{{{r_n}}}$qui en résulte ainsi que$\Delta {r_n}$.
A.N. : Uc = 50 kV, n = 400
5) Pour extraire les protons du cyclotron, on les fait passer dans un déflecteur électrostatique qui a pour but de permettre au faisceau de sortir de la zone où règne un champ magnétique. Ce déflecteur est constitué de 2 lames métalliques courbées et parallèles entre lesquelles on applique une différence de potentiel constante UE afin de créer un champ électrique $\overrightarrow {{E_E}} $ constamment perpendiculaire à la vitesse de la particule, au champ magnétique et dirigé vers l'extérieur (figure 1bis). On se bornera à examiner les conditions d'entrée des particules dans le déflecteur.
a) Pour que les protons correspondant au (n ‑ 2)ième demi cercle ne pénètrent pas entre les 2 lames et que ceux du nième demi cercle y pénètrent, on place la lame intérieure du déflecteur à un rayon r tel qu'elle soit à égale distance du (n ‑ 2)ième et du nième demi cercle. Quelle est la valeur de r pour n = 400 ? On admettra que pour n = 400 les demi cercles ont pour centre le centre du cyclotron.
b) Montrer que l'on peut tolérer des valeurs de l' "acceptance de phase" $\Delta {\Phi _r}$plus grandes que la valeur $\Delta \Phi = 1,5^\circ $prise dans la question précédente. Calculer la valeur maximum $\Delta {\Phi _r}$ admissible pour que tous les protons de la nième orbite pénètrent dans le déflecteur sans que ceux de la (n ‑ 2)ième n'y pénètrent.
A.N. : n = 400 6) Les protons sortant de la source ont une quantité de mouvement faible qui a une composante le long de l'axe du cyclotron dont la valeur maximum est ± mva (va étant la vitesse axiale des protons). Sachant que les protons ne subissent pas d'accélération le long de l'axe jusqu'à ce qu'ils pénètrent dans le déflecteur et sachant que la hauteur disponible par rapport au plan médian dans lequel se trouve la source est h = ± 5 cm, calculer l'énergie cinétique axiale acceptable au départ de la source afin qu'ils ne heurtent pas les parois supérieure ou inférieure des dés. On notera cette énergie par Wa et on l'exprimera en électrons volts. Quelles remarques vous inspire cette valeur ?

II ‑ Le cyclotron qui ne fonctionne pas à l'énergie maximum, calculée précédemment, fournit un faisceau de protons d'énergie cinétique T = 15 MeV que l'on envoie sur une cible d'aluminium dans laquelle on se propose de mettre en évidence des impuretés d'hydrogène. Pour ceci, on étudie la diffusion élastique proton‑proton que l'on compare à la diffusion élastique proton‑ aluminium. On dispose un détecteur de protons D1 selon une direction faisant un angle de 30° avec la direction des protons incidents (figure 2). Pour être bien certain d'avoir une diffusion proton‑proton, on dispose un deuxième détecteur D2 à un angle ψ dans le même plan de diffusion et l'on identifiera comme diffusion proton‑proton la détection simultanée dans les deux détecteurs Dl et D2 des deux protons pl et p2.
1) Calculer à quel angle ψ on doit placer ce deuxième détecteur.
2) Calculer l'énergie cinétique des protons pl (30°) et p2 (ψ). 3) Lorsque la diffusion du proton a lieu sur un noyau d'aluminium dont la masse est 27 fois celle du proton, calculer à quel angle α sera diffusé le noyau d'aluminium, le proton étant toujours diffusé à 30°; sera‑t‑il facile de distinguer une diffusion proton‑proton d'une diffusion proton‑aluminium ?

Ill ‑ Le cyclotron fournissant toujours des protons de 15 MeV, on se propose de les
post-­accélérer en les injectant dans un accélérateur linéaire constitué d'une série de conducteurs métalliques creux, ayant la symétrie de révolution et de même axe appelés cavités. Les protons sont injectés le long de l'axe de cet accélérateur. Les cavités sont connectées comme il est indiqué sur le schéma figure 3. La tension du générateur vaut ${u_L} = {U_L}\sin \left( {2\pi {\nu _L}t} \right)$
Les protons de 15 MeV pénètrent dans la première cavité lorsque uL = 0 c'est‑à‑dire à t=0. Ils doivent ensuite être accélérés par une tension uL = UL toutes les fois qu'ils passent d'une cavité à la suivante.
1) Si ${\nu _c}$est la fréquence de la tension accélératrice du cyclotron, quelle devra être la fréquence la plus basse ${\nu _L}$de l'accélérateur linéaire pour accélérer tous les protons issus du cyclotron.
2) A chaque passage entre 2 cavités les protons sont accélérés et leur énergie augmente de eUL. Calculer la longueur minimum de la première et de la (n ‑ 1)ième cavité.
A. N. UL = 100 kV n = 20
Dans cette question, on considérera que la longueur de l'espace entre cavités est négligeable par rapport à la longueur des cavités.
3) En toute rigueur, pour conserver une bonne stabilité du faisceau, le franchissement des espaces accélérateurs s'effectue lorsque uL est une fonction croissante du temps. Soit ΦS la différence de phase par rapport à celle correspondant au gain maximum en énergie pour laquelle $\sin \left( {2\pi {\nu _L}t} \right) = 1$
Si ${\Phi _S} = 5^\circ $ quelle sera la nouvelle valeur à donner à UL pour que cet accélérateur linéaire conserve les caractéristiques définies plus haut.

Concours Physique ESEM (Spéciale C) 1993 (Corrigé)

ESEM Orléans 1993 ELECTROPHORESE
I Modélisation de la colonne poreuse
I.1. La résistance d'un conducteur est R= U/I = (1/γ')l/S
Donc ici $\gamma '\, = \frac{I}{{{U_1} - {U_2}}}\frac{{l'}}{{S'}}$ soit numériquement γ'=0.83 Ω-1 .m-1
I.2 .$S\ell \, = S'\ell '\, - (M/\rho )$ ( = volume total – volume des fibres )

$R = \frac{1}{\gamma }\frac{\ell }{S} = \frac{1}{{\gamma '}}\frac{{\ell '}}{{S'}}$ => $\ell = \ell '\frac{\gamma }{{\gamma '}}\frac{S}{{S'}}$ et de même $S = \frac{\ell }{{\ell '}}\frac{{\gamma '}}{\gamma }S'$
en remplaçant dans l'expression précédemment obtenue :
$S = (S'\ell '\, - (M/\rho )\frac{1}{\ell }$ => $S = \sqrt {(S'\ell '\, - (M/\rho )\frac{1}{{\ell '}}'\frac{{\gamma '}}{\gamma }S'} $ et $\ell = \sqrt {(S'\ell '\, - (M/\rho )\frac{1}{{S'}}'\frac{\gamma }{{\gamma '}}S} $
S= 1.7 cm2 et l= 31 cm
II Etude du mouvement d'un ion
II.1. $\vec E\, = \,\frac{{{U_1} - {U_2}}}{\ell }{\vec u_x}$ et $\vec F\, = \,q\vec E$
II.2. $m\frac{{d\vec v}}{{dt}} = q\vec E\, - f\vec v$
s'intègre en $\vec v = \,{\vec v_0}\,{e^{ - \frac{{f\,t}}{m}}} + \frac{q}{m}\vec E$ et à t= 0 v= 0 => $\vec v = \,\frac{q}{f}\vec E(1 - {e^{ - \frac{{f\,t}}{m}}})$
La vitesse limite ${\vec v_\infty } = \,\frac{q}{f}\vec E$est atteinte à 5% près pour t1 tel que $v({t_1}) = 0.95{v_\infty } = > \,(1 - {e^{ - \frac{{f\,t}}{m}}}) = 0.95\,\, = > \frac{{f\,{t_1}}}{m} = - \ln \,0.05\,\, = > $${t_1}\, = \,\frac{m}{f}\ln \,20$
${\vec v_\infty } = \,\frac{q}{f}\vec E = \mu \vec E$ => $f = \,\frac{q}{\mu }$ ${t_1}\, = \,\frac{{m\mu }}{q}\ln \,20\,\, = \,\,\,{9.410^{ - 14}}s$ et v ≅2 10-5s

On peut donc considérer que cette vitesse limite est atteinte quasi-instantanément.
La durée possible de l'expérience est la durée de parcours des ions du centre vers un bout e de la cuve Soit τ ≅ l/2v≅ 2 heures
III Etude de la diffusion
III.1. La répartition des molécules est homogène selon y et z , et il n'y a pas de diffusion dans ces directions
III.2. j en m-2s-1 et D en m2s-1
III.3. le nombre de particules à l’intérieur du cylindre dS dx varie de
dN = jn(x) S dt – jn(x+dx)S dt $dN = \, - \,\frac{{\partial {j_n}}}{{\partial x}}\,dx\,S\,dt\,$
La concentration particulaire = nb de particule par unité
de volume=n=(N/S)dx varie donc de dn = dN / S dx $dn = \, - \,\frac{{\partial {j_n}}}{{\partial x}}\,\,dt\,$donc $\frac{{\partial n}}{{\partial t}} = \, - \,\frac{{\partial {j_n}}}{{\partial x}}\,\,\,$
III.4. Loi de Fick ${j_{}}\, = \, - D\,\frac{{\partial n}}{{\partial x}}$ et Bilan de particules $\frac{{\partial n}}{{\partial t}} = \, - \,\frac{{\partial j}}{{\partial x}}\,\,\,$=>$\frac{{\partial n}}{{\partial t}} = \,D\,\frac{{{\partial ^2}n}}{{\partial {x^2}}}\,\,\,$
III.5. $n(x,t) = \frac{A}{{\sqrt t }}{e^{ - B\frac{{{x^2}}}{t}}}$ =>
$\frac{{\partial n}}{{\partial t}} = A[\frac{{ - 1}}{2}{t^{ - 3/2}}{e^{ - B\frac{{{x^2}}}{t}}} + {t^{ - 1/2}}(\frac{{B{x^2}}}{{{t^2}}}{e^{ - B\frac{{{x^2}}}{t}}})] = \frac{A}{{2{t^{3/2}}}}{e^{ - B\frac{{{x^2}}}{t}}}( - 1 + \frac{{2B{x^2}}}{t})$
$\frac{{\partial n}}{{\partial x}} = \frac{A}{{\sqrt t }}( - \frac{B}{t}2x{e^{ - B\frac{{{x^2}}}{t}}})$et $\frac{{{\partial ^2}n}}{{\partial {x^2}}} = \frac{A}{{\sqrt t }}( - \frac{B}{t}2)[{e^{ - B\frac{{{x^2}}}{t}}} + x( - \frac{B}{t}2x{e^{ - B\frac{{{x^2}}}{t}}})] = \frac{{2AB}}{{{t^{3/2}}}}{e^{ - B\frac{{{x^2}}}{t}}}[ - 1 + \frac{{2B{x^2}}}{t}]$
$\frac{{{\partial ^2}n}}{{\partial {x^2}}} = 4B[\frac{A}{{{t^{3/2}}}}{e^{ - B\frac{{{x^2}}}{t}}}[ - 1 + \frac{{2B{x^2}}}{t}]] = 4B\,\frac{{\partial n}}{{\partial t}}$
Ces deux dérivées vérifient bien d'équation de diffusion avec D = 1/4B

III.6.

III.7. A la date t, 95 % des molécules sont dans la zone de largeur Δl, si la probabilité pour que |x| >Δl/2 est égale à 5%
Or, n(x,t) suit une loi de Gauss , pour laquelle on nous rappelle que cette probabilité de 5% correspond à "σ " soit ici 2σ2=t/B= 4Dt => Donc $\Delta \ell = 2\sqrt {2Dt} $
IV Etude du phénomène général
IV.1.

IV.2.La séparation est convenable si

${v_1}t + \sqrt {2{D_1}t} \,\,\,\, < {v_2}t - \sqrt {2{D_2}t} $
soit $({v_2} - {v_1})t > (\sqrt {2{D_1}} + \sqrt {2{D_2}} )\sqrt t $
$t\,\,\, > {\left[ {\frac{{\sqrt {2{D_1}} + \sqrt {2{D_2}} }}{{{v_2} - {v_1}}}} \right]^2}$
t= 41 s

Concours Physique TPE 1992 (Corrigé)

  1. Sur le système (O,$\vec u,\vec v$), P a pour coordonnées (a,0) et Ω a pour coordonnées (-a cos θ, a sin θ) ; d’où : $P\vec \Omega = - a\left( {1 + \cos \theta } \right)\vec u + a\sin \theta \vec v$
  2. $P\Omega = 2a\cos \frac{\theta }{2}$ s’obtient à partir des coordonnées précédentes ou en raisonnant directement sur le triangle isocèle OPΩ dont les angles P et Ω valent θ/2.
  3. $\vec T = K\left( {2a\cos \frac{\theta }{2} - \ell } \right)\left[ { - \cos \frac{\theta }{2}\vec u + \sin \frac{\theta }{2}\vec v} \right]$
  4. $\vec F = Mg\left[ {\cos \theta \vec u - \sin \theta \vec v} \right] + r\vec u + K\left( {2a\cos \frac{\theta }{2} - \ell } \right)\left[ { - \cos \frac{\theta }{2}\vec u + \sin \frac{\theta }{2}\vec v} \right]$
    où r est la mesure algébrique (et non le module) de la réaction du demi cercle sur la perle.

  5. $\vec V = a\dot \theta \vec v$.
  6. $\vec F.\vec V = a\dot \theta \left[ {\left( {Ka - Mg} \right)\sin \theta - K\ell \sin \frac{\theta }{2}} \right]$.
  7. $\vec F.\vec V = - \frac{{d{E_p}}}{{dt}} = - \frac{{d{E_p}}}{{d\theta }}\frac{{d\theta }}{{dt}}$. D’où $\frac{{d{E_p}}}{{d\theta }} = a\left[ {\left( {Mg - Ka} \right)\sin \theta + K\ell \sin \frac{\theta }{2}} \right]$ et
    ${E_p} = a\left[ {\left( {Ka - Mg} \right)\cos \theta - 2K\ell \cos \frac{\theta }{2}} \right] + cste$
  8. $E = \frac{1}{2}M{a^2}{\dot \theta ^2} + {E_p}$
  9. En projetant la loi fondamentale de la dynamique sur $\vec v$ et en utilisant l’expression de la force de la question 4, on obtient : $Ma\ddot \theta = {F_\theta } = - Mg\sin \theta + K\left( {2a\cos \frac{\theta }{2} - \ell } \right)\sin \frac{\theta }{2} = \left( {Ka - Mg} \right)\sin \theta - K\ell \sin \frac{\theta }{2}$
    On peut aussi obtenir cette relation en dérivant l’énergie par rapport au temps.
  10. Les positions d’équilibres sont celles pour lesquelles: ${F_\theta } = 2\left( {Ka - Mg} \right)\sin \frac{\theta }{2}\cos \frac{\theta }{2} - K\ell \sin \frac{\theta }{2} = 0$
    - ou bien $\theta = 0$ ;
    - ou bien $\theta = \pm \,{\theta _1}$ tel que $\cos \frac{{{\theta _1}}}{2} = \frac{{K\ell }}{{2\left( {Ka - Mg} \right)}}$ si cette équation a des racines.
  11. ${\theta _1}$, compris entre 0 et $\frac{\pi }{2}$(soit $\frac{{{\theta _1}}}{2}$ compris entre 0 et $\frac{\pi }{4}$), existe si $\frac{1}{{\sqrt 2 }} \le \frac{{K\ell }}{{2\left( {Ka - Mg} \right)}} < 1$, ce qui exige $Ka > Mg$ et $1 < \frac{{2\left( {Ka - Mg} \right)}}{{K\ell }} \le \sqrt 2 $. Donc${\theta _1}$ existe si $K\left( {a - \frac{\ell }{{\sqrt 2 }}} \right) \le Mg < K\left( {a - \frac{\ell }{2}} \right)$
    Le poids ne doit être, ni trop grand (alors il n’y a qu’une position d’équilibre, qui est stable, en θ = 0), ni trop petit (alors l’action du ressort l’emporte et la position d’équilibre θ = 0 est instable ; lorsqu’on s’en écarte, la perle est rappelée au delà de sa position extrême $\theta = \frac{\pi }{2}$).

  12. L’équilibre est stable si $\frac{{d{F_\theta }}}{{d\theta }} < 0$ et instable si $\frac{{d{F_\theta }}}{{d\theta }} > 0$. Comme :
    $\frac{{d{F_\theta }}}{{d\theta }} = - \left( {Ka - Mg} \right)\cos \theta - \frac{{K\ell }}{2}\cos \frac{\theta }{2}$, la position d’équilibre θ = 0 est stable si $Mg \le K\left( {a - \frac{\ell }{2}} \right)$(alors, c’est la seule position d’équilibre) et instable si l’inégalité est en sens contraire.
    Si θ1 existe, θ = ± θ1 sont des positions d’équilibre stable, parce que les positions d’équilibres sont alternativement stables et instables. On peut aussi le montrer en examinant le signe de $\frac{{d{F_\theta }}}{{d\theta }} = \left( {Ka - Mg} \right)\cos {\theta _1} - \frac{{K\ell }}{2}\cos \frac{{{\theta _1}}}{2}$
    $ = \left( {Ka - Mg} \right){\left\{ {2{{\left[ {\frac{{K\ell }}{{2\left( {Ka - Mg} \right)}}} \right]}^2} - 1} \right\}_1} - \frac{{K\ell }}{2}\frac{{K\ell }}{{2\left( {Ka - Mg} \right)}} = \frac{{{K^2}{\ell ^2}}}{{4\left( {Ka - Mg} \right)}} - \left( {Ka - Mg} \right)$ qui est négatif puisque $\frac{{K\ell }}{{2\left( {Ka - Mg} \right)}} < 1$.
  13. $a = \frac{{2Mg}}{K}$ ; $\ell = \sqrt {3\frac{{Mg}}{K}} $. D’où : $\cos \frac{{{\theta _1}}}{2} = \frac{{\sqrt 3 }}{2}$ ; ${\theta _1} = \frac{\pi }{3}$.
    Les positions d’équilibre sont donc $\theta = - \frac{\pi }{3},\;\theta = 0\;et\;\theta = + \frac{\pi }{3}$.
    Comme $\frac{{d{F_\theta }}}{{d\theta }}\left( {\theta = 0} \right) = \left( {1 - \frac{{\sqrt 3 }}{2}} \right)Mg > 0$, la position d’équilibre θ = 0 est instable.
    Comme $\frac{{d{F_\theta }}}{{d\theta }}\left( {\theta = \pm {\theta _1}} \right) = - \frac{1}{4}Mg < 0$, les positions d’équilibre θ = ± θ1 sont stables.
    L’énoncé complique inutilement la résolution de ce problème en obligeant à intégrer F pour obtenir Ep, puis en dérivant deux fois Ep pour obtenir la dérivée de F. Il est plus simple de ne dériver qu’une fois F.
  14. Si ε est petit, une expression approximative de la force au voisinage de la position d’équilibre est : ${F_\theta } \approx \varepsilon \frac{{d{F_\theta }}}{{d\theta }}\left( {\theta = \pm {\theta _1}} \right) = - \frac{{Mg}}{4}\varepsilon $. La loi fondamentale de la dynamique s’écrit $Ma\ddot \varepsilon = - \frac{{Mg}}{4}\varepsilon $ qui est l’équation d’un oscillateur harmonique de pulsation Ω telle que ${\Omega ^2} = \frac{g}{{4a}} = \frac{K}{{8M}}$ .
  15. Si on résout naïvement l’énoncé, on trouve une amplitude de ε égale à $\sqrt 2 $ radian, ce qui est trop grand.
    L’énergie cinétique initiale est ${E_c}\left( 0 \right) = \frac{1}{2}M{a^2}\dot \varepsilon _0^2 = \frac{{Mga}}{4} = 0,25Mga$.
    La différence d’énergie potentielle entre le point de départ (minimum) et le point extrême possible (maximum) est ${E_p}\left( {\theta = \frac{\pi }{2}} \right) - {E_p}\left( {\theta = \frac{\pi }{3}} \right) = Mga\left( {\frac{5}{2} - \sqrt 6 } \right) \approx 0,05Mga$, qui est nettement plus petit que l’énergie cinétique initiale. Donc la perle a un mouvement approximativement uniforme $\varepsilon \approx \varepsilon \left( 0 \right)t$ jusqu’à ce qu’elle parvienne à l’extrémité du demi cercle. L’énoncé ne permet pas de savoir ce qu’il advient ensuite.

  16. ${\Omega ^2} = \frac{K}{{8M}} = \frac{{K'}}{M}$. Donc $K' = \frac{K}{8} = 125\;N/m$. K’ est nettement plus petit que K, car le poids est la force de rappel la plus importante et diminue notablement l’effet du ressort.
  17. ${\Omega ^2} = \frac{g}{{4a}} = \frac{g}{L}$. Donc $L = 4a = \frac{{8Mg}}{K} = 7,8\;cm$. A noter l’irréalisme de la petitesse de a. En l’absence de ressort, le système est équivalent à un pendule de longueur a, donc on aurait L = a. Le ressort jouant contre le poids, tout se passe comme si la pesanteur était plus faible, ou, ce qui revient au même, comme si la longueur du pendule était plus grande.
  18. ${\vec \sigma _O} = M{a^2}\dot \theta \vec k$.
  19. $O\vec P \wedge F = a{F_\theta }\vec k$.
  20. $\frac{{d{{\vec \sigma }_O}}}{{dt}} = O\vec P \wedge \vec F$ soit $M{a^2}\ddot \theta = a{F_\theta }$ qui au facteur a près est identique à l’équation de la question 9. Il vaut mieux ne pas expliciter la force, la démonstration est alors plus claire.

Autres Concours

2011  : Concours ENAC de  physique 2011  :  énoncé ,  corrigé Concours ICNA de  physique 2011  :  énoncé ,  corrigé Concours ICNA de ...